

RUD ANTRIEBSTECHNIK

SCHWENKEN · HEBEN · BEWEGEN · TELESKOPIEREN · WENDEN

BRUD

Kommen Ihnen diese Themen bekannt vor?

2

Sie setzen Investitionen ganz gezielt ein und sind immer auf der Suche nach Optimierungen und neuen Verfahrens-Lösungen. TECDOS bietet Antriebs-Innovationen für Anwendungen im Industrie-, Hafen- und Offshore-Bereich.

> Mehr auf den Seiten 4 - 7

Sie haben immer Ärger mit der Witterungsbeständigkeit der eingesetzten Antriebslösungen. Ihnen rosten die Module einfach zu schnell weg.

TECDOS Komponenten und Module bewähren sich wo andere Systeme versagen.

> Mehr auf den Seiten 8 und 9

Sie wollen nicht nur Einzelteile kaufen, sondern wünschen sich kostengünstige Komplettlösungen. TECDOS bietet intelligente Module und Komplett-Systeme für Ihre Herausforderungen.

> Mehr auf Seite 14 - 17 und 22 - 24

Fehlt Ihnen der Ansprechpartner vor Ort? Dann nehmen Sie Kontakt zu unserem Vertriebsteam auf.

www.rud-tecdos.com

Wünschen Sie sich mehr technische Beratung und Betreuung? Dann fordern Sie uns. Nehmen Sie direkten Kontakt zu unseren Ingenieuren auf und senden Sie uns Ihre antriebstechnischen Herausforderungen:

> tecdos@rud.com

Können Sie sich vorstellen mit einem Unternehmen zusammenzuarbeiten, das kompetent ist, alle Ihre antriebstechnischen Herausforderungen zu lösen und zudem ein hohes Maß an Service und kaufmännischer Betreuung sicherstellt? Dann nehmen Sie Kontakt zu uns auf...

> tecdos@rud.com

Tel. +49 / 7361 50 41 1373

Fax +49 / 7361 50 41 1543

RUD

TECDOS® Leistungsstark in jeder Umgebung für horizontale, kurvige und vertikale Antriebskonzepte

		×
		г
_		г

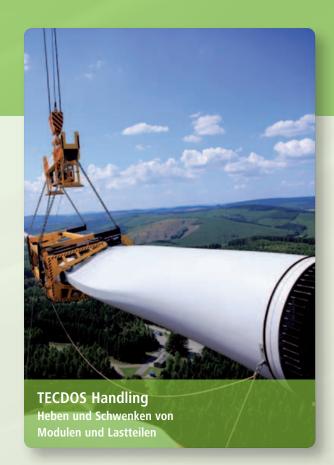
RUNDSTAHLKETTE

-
5
ш
ш
ш
α
$\overline{}$

1	TECDOS — Anwendungsbeispiele Handling, Industrie, Mining und Windkraft4/5
	TECDOS — Anwendungsbeispiele Hafen und Offshore6/7
	FECDOS – Einzelkomponenten m Überblick8
	TECDOS – Module und Komplettsysteme im Überblick9
	Antriebssysteme mit Rundstahlkette – Vorteile im Vergleich10/11
	Material- und Einsatzvorteile der RUD Rundstahlkette12
	TECDOS – Hochleistungskette
	Antriebssysteme zum Bewegen 14
	Das OMEGA-Prinzip15
-	Das OMEGA-Komplettsystem 16


Die OMEGA-Modulbauweise 17
Pi/Gamma-Taschenradblöcke 18
■ TECDOS – Mehrstrangsysteme 19
■ TECDOS – Kettenräder für Antrieb und Umlenkung
■ TECDOS – Kettenführung / Kettenendbefestigung21
■ Komplettsystem TOOL MOVER "Saving a life is priceless"
■ TECDOS — Informationen
■ TECDOS - Informationen ■ Montageanleitung
Montageanleitung25
Montageanleitung
 Montageanleitung

TECDOS®



Richtungsweisende Antriebskonzepte für alle Bewegungsabläufe im Handling- und Onshore-Bereich horizontal — vertikal — kurvig

BRUD

Verspannter, pendelfreier Hub von Bauteilen

TECDOS Onshore Witterungsbeständiges Heben und Senken von Elementen

TECDOS®

Robuste Antriebskonzepte für alle Bewegungsabläufe im Offshore- und Hafen-Bereich robust — platzsparend — effektiv

TECDOS Offshore Skidding-Systeme Antriebe für Verschubbahnen auf Pontons auf/unter Deck von Schiffen

TECDOS Offshore Spulvorrichtungen für Seilwinden und Schlauchtrommeln

TECDOS Offshore
Skidding Systeme – Antriebe für Verschubbahnen von Pontons auf Schiffen

TECDOS®-Komponenten

zum Aufbau einer kompletten TECDOS-Antriebslösung basierend auf der TECDOS-Hochleistungs-Rundstahlkette

		TECD	OS-КОМРО	NENTEN						
	Antriebsmodule und Antriebskomponenten									
	Pi-Antrie Komplettsystem inklu		Gamm Komplettsystem	na-Antrieb inklusive Ke	ttenrad	Ome	ega-Antrieb			
0			0.00	3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-						
	TECDOS [®]	Beginst Hochleistungskette dium (vergütet)	1		TECDO Premi	S [®] Hochleistun ium (einsatzge	ngskette härtet)			
þ		3-53-(3-5							
	Kettenfo	ührungen			Kettenräder					
		-								
			TECDOS® Zube							
	End- befestigungen	Anschlagpunkte PowerPoint	Cok Gabelko	ora- pfhaken		lub- renzer	Ketten- schlösser			
O O	A STATE OF THE STA									
							D 6.3			

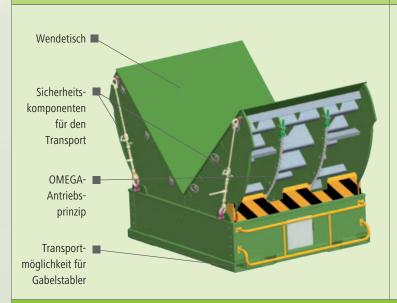
TECDOS®-Komplettsysteme

Komplette Antriebslösungen und Handlingsysteme auf Basis der TECDOS-Komponenten

ANTRIEBSLÖSUNG

OMEGA-DRIVE (Beispiel mit Elektromotor SEW)

OMEGA-DRIVE ist die ideale Antriebslösung für lineare oder drehende Bewegungen. Zum Verfahren einer Laufkatze auf einem Träger, Schiffskräne auf einer Schiene oder für Schlittenanwendungen, übertrifft er vergleichbare Zahnstangen- und Zahnkranzlösungen. Er ist unempfindlicher gegen Schmutz, Sand, Eis, usw. und ist einfacher zu montieren und toleriert Abweichungen der Flucht. Das modulare Konzept ermöglicht den Antrieb durch Elektro-, Hydraulikoder Pneumatikmotoren, kann aber auch inklusive Elektromotor bestellt werden. Mit stehender oder bewegter Kette möglich.



HANDLINGSYSTEME

TOOL MOVER

Werkzeugwender für sicheres Drehen und Wenden von schweren und empfindlichen Werkzeugen und Maschinen-Komponenten.

- Freundliche, einfache Bedienung
- Geräuscharmer, ruhiger Lauf (theatererprobt)
- Robuste Konstruktion
- Wartungsfreundlich
- Unterschiedlichste Werkzeuggrößen
- Verschiedene Optionen (auf Ihre Anforderungen zugeschnitten)
- Flexibel einsetzbar (transportabel über Stapler oder Kran)

ANBAUTEILE UND MOTOREN FÜR KOMPLETTSYSTEME

Komplettsysteme inklusive Motor verschiedener Hersteller lieferbar.

Hightech-Produkt Rundstahlkette

Die Vorteile im Vergleich zu anderen Antriebs-Systemen im harten Einsatz

> **Verhalten bei Korrosion** Rundstahlkette: sehr gut

> > schlecht

schlecht

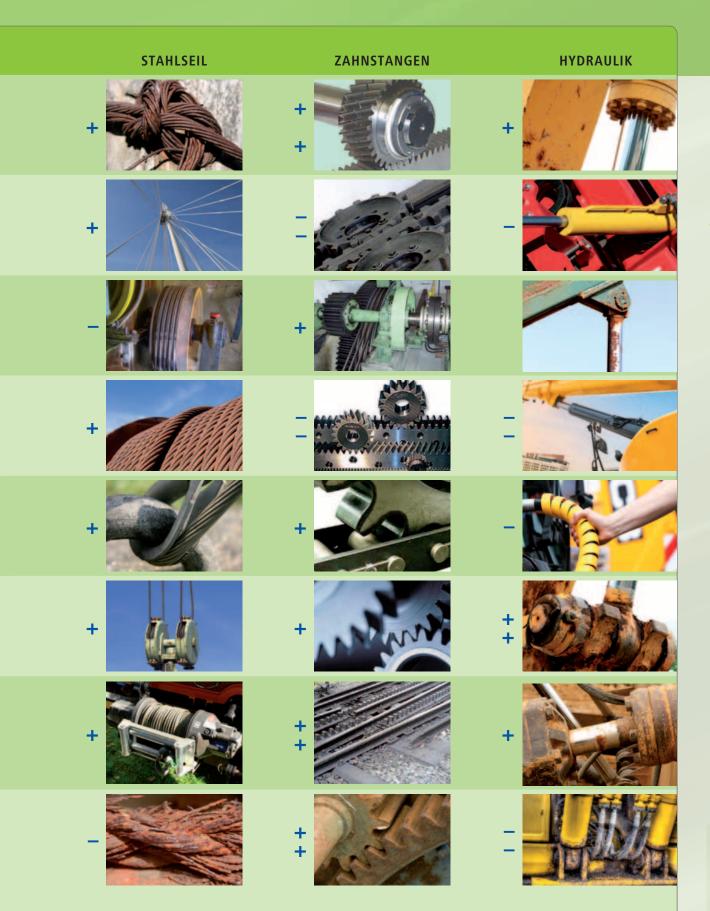
sehr schlecht

Rollenkette:

Zahnstangen: gut Hydraulik: sehr

Stahlseil:

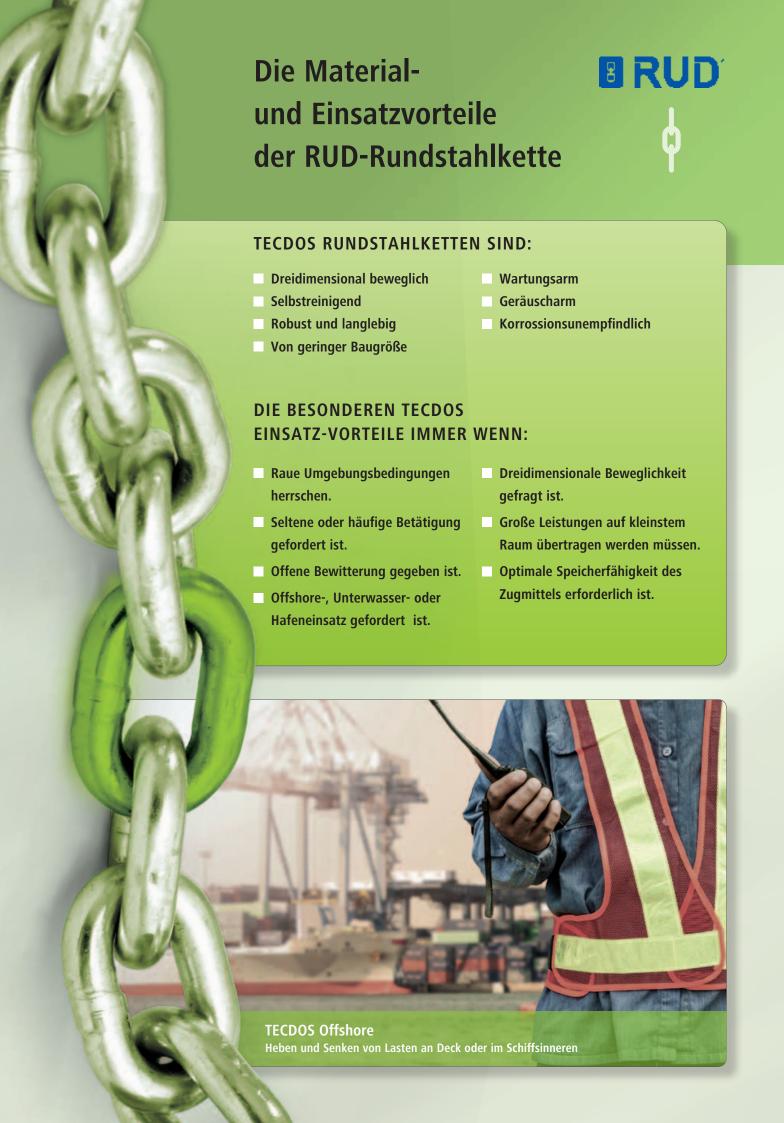
10



		RUD RUNDSTAHLKETTE	ROLLENKETTE
1	Robustheit Rundstahlkette: sehr gut Rollenkette: schlecht Stahlseil: befriedigend Zahnstangen: gut Hydraulik: befriedigend	+ + + + + + + + + + + + + + + + + + + +	-
1	3D-Beweglichkeit Rundstahlkette: sehr gut Rollenkette: schlecht Stahlseil: befriedigend Zahnstangen: schlecht Hydraulik: schlecht	+ + + + + + + + + + + + + + + + + + + +	
1	Umlenkradius Rundstahlkette: klein Rollenkette: klein Stahlseil: groß Zahnstangen: groß Hydraulik: —	+ + + + + + + + + + + + + + + + + + + +	++++++
1	Speicherfähigkeit Rundstahlkette: gut Rollenkette: schlecht Stahlseil: befriedigend Zahnstangen: schlecht Hydraulik: schlecht	+ + + + + + + + + + + + + + + + + + + +	
1	Wartung Rundstahlkette: sehr selten Rollenkette: ständig Stahlseil: selten Zahnstangen: selten Hydraulik: sehr aufwendig	+	-
1	Endfixierung Rundstahlkette: sehr gut Rollenkette: gut Stahlseil: befriedigend Zahnstangen: befriedigend Hydraulik: gut	+ + + +	+ + + + + + + + + + + + + + + + + + + +
1	Seltene Betätigung Rundstahlkette: sehr gut Rollenkette: schlecht Stahlseil: befriedigend Zahnstangen: gut Hydraulik: gut	+ + + + + + + + + + + + + + + + + + + +	-

RUD

11



TECDOS®-Hochleistungskette

Medium / Premium

zum Schwenken, Heben, Bewegen, Teleskopieren und Wenden

Kettenschlösser

Für alle TECDOS-Antriebslösungen immer die optimale

Ketten-Auswahl

einsatzgehärtete Ketten HV 580 - 600

	U		

	Betriebs-	Gewicht		Längen (m)								
Kette kraft ca.		10		20		30		50		variabel		
	[kN] (kg/	(kg/iii)	Medium	Premium	Medium	Premium	Medium	Premium	Medium	Premium	Medium	Premium
TEC 6	6	0,59	7905141	7905150	7905140	7905149	7905139	7905148	7905138	7905147	7905137	7905146
TEC 12	12	1,13	7905106	7905117	7905105	7905116	7905104	7905115	7905130	7905114	7905102	7905113
TEC 25	25	2,24	7905097	7905072	7905096	7905071	7905095	7905070	7905094	7905069	7905093	7905068
TEC 43	43	3,80	7905061	7905049	7905060	7905048	7905059	7905047	7905058	7905046	7905057	7905040
TEC 65*	65	5,70	-	-	-	-	-	-	-	-	7904959	7905020
TEC 140*	140*2)	12,30	-	-	-	-	_	_	_	-	7904948	7905015
TEC 260*	260*2)	22,60	-	-	-	-	-	-	_	-	7904947	-

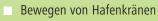
*²⁾ Bei Einsatz von TECDOS Kettenschlössern gilt deren Betriebskraft *3) Sonderlängen auf Anfrage

Korrosionsschutzüberzüge für TECDOS-Hochleistungsketten								
Oberfläche	Kurzbeschreibung der Oberflächenbeschichtung	Neuzustand	Nach 100 Stunden Salzsprühtest					
galvanisch verzinkt * topcoat silber	elektrolytische Metallabscheidung (6-10 µm)	(600)						

TECDOS-KETTENSCHLOSS TECDOS Kette und TECDOS Schloss bilden ein verlässliches System welches sich auch perfekt für Anwendungen mit dem OMEGA DRIVE und dem Kettenrad eignet.

TECDOS-Kettenschlösser									
Sachnr.	Kettengröße	Betriebs- kraft kN	Lastwechsel	Max. zul. Kettengeschwindigkeit	Gewicht kg	Oberfläche			
7906522	TEC140	100	20.000	8 m/min	1,2	lackiert			
Auf Anfrage	TEC260	200	20.000	4 m/min	2,6	lackiert			

OMEGA DRIVE



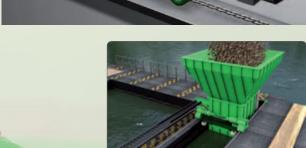
Innovatives Antriebssystem für lineare und drehende Bewegungen

- Ausrichten und justieren von Schiffsbe- und entladern
- Bewegen von Schiffskränen
- Öffnen und Schließen von Schiebetoren in Laderäumen
- Drehen von Plattformen
- Antreiben von Fähren
- Bewegen von Waggons zur Entladung
- Ausfahren von Teleskopauslegern von Schiffsbeladern oder Kränen
- Bewegen von Meerespfosten
- Skidding Systeme

Das OMEGA-Prinzip

Antriebsrad mit 180° Umschlingungswinkel

- Umlenkräder
- Integrierte Gleitlager
- Kettenführung integriert
- frei von



You Tube

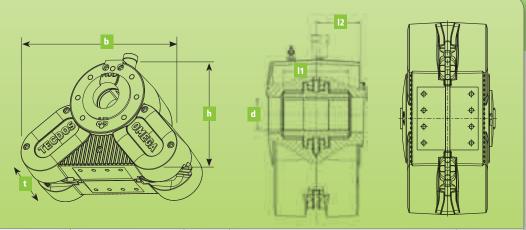
OMEGA-**Anwendungs**möglichkeiten

- 1. Linearer Lauf, fixierter Antrieb und mobile Kette/Gerät
- 2. Mobiler Antrieb und fixierte Kette/Gerät
- 3. Gekrümmter Lauf
- 4. Fixierter Antrieb und mobile Kette/Gerät

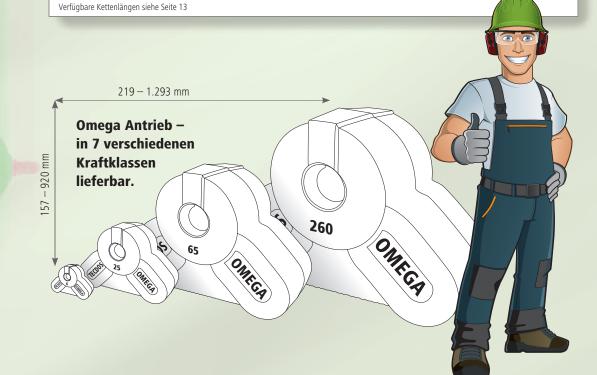
Weitere Informationen: www.youtube.com/user/RUDKetten

Omega-Drive Hotline: Tel.: +49 -73 61-504-1373 **Abnahmen** verschiedener maritimer Klassifikationsgesellschaften möglich!

- Antriebswelle Zusatzkräften


16

Das OMEGA-Komplettsystem



Leistungsstarke Antriebe in jeder Umgebung für horizontale, gekrümmte und kurvige Antriebskonzepte

	M	laße (mr	n)		Nabenabmaße (mm)				
Bezeichnung	Höhe (h)	Breite (b)	Tiefe (t)	Eigen- gewicht (kg)	Durchmesser (d)	Länge (l1)	Länge (I2)	Anzahl der Nuten DIN 6885 (mm) P9	Art.Nr.
Omega 6	157	219	147	20	25 H7	110	67,5	1	7905346
Omega 12	219	305	184	46	40 H7	135	84,5	1	7905134
Omega 25	293	407	236	104	50 H7	170	106	1	7905351
Omega 43	376	524	303	216	70 H7	220	136	1	7905356
Omega 65	468	649	320	333	90 H7	210	141	1	7905360
Omega 140	685	953	444	991	130 H7	300	194,5	2 (120°)	7905364
Omega 260	920	1.293	547	2.163	180 H7	368	236	2 (120°)	7905371

Die OMEGA-Modulbauweise

Modularer Aufbau für größtmögliche Flexibilität bei der Wahl des Elektro-, Hydraulik- oder Pneumatikmotors

The same of the sa									
Bezeichnung	Betriebs- kraft* max. [kN]	Geschwindigkeit [m/min]	igkeit Motor		Welle	Montage- leiste			
		6	KHF 47 DRE80M4						
OMEGA 6	6	8		X	X	X			
OWIEGA 0	0	10	KHF 47 DRE90L4	^	^	^			
		12							
		6	KHF 67 DRE90L4						
OMEGA 12	12	8	KHF 67 DRE100M4	X	Х	Х			
OWILGA 12	12	10	KIII 07 DIKE100W14	_ ^	^	^			
		12	KHF 67 DRE100LC4						
		6	KHF 87 DRE100LC4	_					
OMEGA 25	25	8	KHF 87 DRE132S4	Χ	X	X			
OWILGA 23	23	10	KIII 07 DILE13234	_ ^		^			
		12	KHF 87 DRE132M4						
		6	KHF 97 DRE132M4						
OMEGA 43	43	8		- x	Х	X			
OWIEGA 45	45	10	KHF 97 DRE132MC4		Λ	Λ			
		12	KHF 97 DRE160S4						
		2	KHF 107 R77DRE100M4	_	X				
		4	KHF 107 R77DRE132M4			X			
OMEGA 65	65	6	KHF 107 DRE132MC4	X					
		8	KHF 107 DRE160M4						
		10	KHF 107 DRE160MC4						
		2	PHF002 KF77 DRE132M4						
		4	PHF002 KF77 DRE160MC4						
OMEGA 140	140	6	PHF002 KF87 DRE180M4	X	X	X			
		8	PHF002 KF87 DRE180LC4						
		10	X4KH150/HU/F						
		1	PHF032 KF97 DRE132M4						
OMEGA 260	260	2	PHF032 KF97 DRE160M4	V	X	V			
OIVIEGA 200	200	3	PHF032 KF97 DRE180M4	X		X			
		4	PHF032 KF97 DRE180L4						

OMEGA-Drive-Komplettsystem

- Dieses innovative Antriebskonzept "schnurrt" auch dann noch zuverlässig, wenn Zahnstangentriebe, Spindelantriebe oder Rollenketten längst den Geist aufgegeben haben.
- Schmutz, Regen, aggressive Medien, ja selbst Eis halten den RUD-OMEGA-Antrieb nicht auf. Dieses Antriebs-Konzept hat sich in unzähligen Anwendungen weltweit bewährt.

OMEGA-Drive Anwendungsmöglichkeiten

- Sei es Krane auf Schiffen zu bewegen, Solarpanels der Sonne nachzuführen oder einfach eine Maschine zu verfahren – RUD-OMEGA ist die perfekte, innovative Antriebs-Lösung.
- Anbauteile zum Anflanschen von Motoren auf Anfrage.

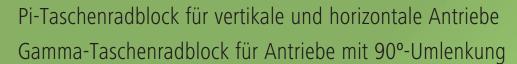
Bestellbeispiel

Omega-Antrieb: OMEGA 6 Betriebskraft: 6 kN

Geschwindigkeit: 10 m/min Motor: KHF 47 DRE90L4

Adapter: X (ja) Welle: X (ja)

Montageleiste: X (ja)



Pi-/Gamma-Taschenradblöcke

Pi-Antriebsprinzip

- Vielseitig einsetzbar als
 Antriebs- oder Umlenkmodul.
- Integrierte Wälzlager.
- Antriebswelle frei von Zusatzkräften.
- Benötigen beim Einsatz als Umlenkmodul keine Welle.
- Kettenführung und Entknoter integriert.
- Auf Anfrage für alle Kettengrößen verfügbar.

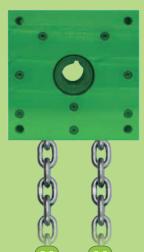
Kette	Anz. Zähne (Stk.)	L1 (mm)	L2 (mm)	L3 (mm)	L4 (mm)	L5 (mm)	L6 (mm)	L7 (mm)	ø D1 (mm)	ø D2 (mm)	ø D3 (mm)	Zeich Nr.	Art Nr.
TEC6	6	170	170	57	70	70	_	_	30 H7	110,5	11,0	H05091	7905451
TEC12	6	260	260	80	115	115	_	_	40 H7	180,5	13,5	H05094	7905430
TEC25	6	310	310	110,5	138	138	_	_	50 H7	230,5	17,5	H05095	7905520
TEC43	6	360	360	131,5	155	155	_	_	70 H7	250,5	21,0	H05080	7905745
TEC65	6	460	460	161,5	150	209	209	150	90 H7	350,5	21,0	H05099	7906750
TEC140	6												
TEC260	6												

Weitere Größen auf Anfrage

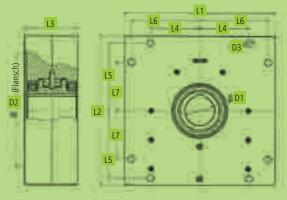

System-Anwendungen für TECDOS-Pi/Gamma:

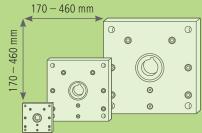
Vertikaler Pi-Antrieb mit Doppelstrang mit zwei parallel laufenden Antrieben

Horizontaler Antrieb Doppelstrang mit zwei parallel laufenden Pi-Antrieben

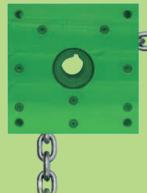


Vertikaler Gamma-Antrieb Doppelstrang mit einem Antrieb


Auch mit 3- und 4-fach-Strang


3- und 4-fach-Strang mit Antrieb je nach Anwendung

Pi-Umschlingungswinkel 180°



Pi-/Gamma-Antriebe können passend zu allen Kettengrößen gefertigt werden.

Neben TECDOS Endbefestigungen sind viele Anschlagmittel aus der RUD-Programm kombinierbar.

- 1. Endbefestigung
- 2. Anschlagpunkt PowerPoint
- 3. Cobra-Gabelkopfhaken

TECDOS® Mehrstrangsysteme

für Antriebe mit vertikaler oder horizontal/ansteigender Ausrichtung

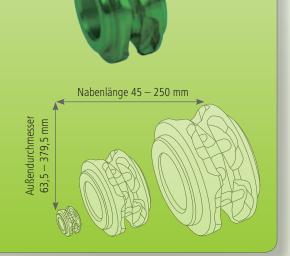
monizontalianistergenaen mastrentarig		
VERTIKALE ANTRIEBE	HORIZONTALE ANTRIEBE	
Doppelstrang mit zwei parallel laufenden Antrieben	Doppelstrang mit zwei parallel laufenden Antrieben	
Doppelstrang mit einem Antrieb	Doppelstrang mit einem Antrieb	
000000000		
3-fach-Strang mit einem Antrieb	TECDOS Offshore	
4-fach-Strang mit einem Antrieb	Innovative Lösungen für militärische Anwendungen	
000000000000000000000000000000000000000	TECDOS Offshore Handling schwerer MOONPOOL-Plattformen	

RUD

Kettenräder für Antrieb und Umlenkung

TECDOS Kettenräder

- Rost- und säurebeständige Antriebs- und Umlenkräder auf Anfrage lieferbar.
- Die Bohrung und Nabenausführungen können nach Kundenwunsch ausgeführt werden (Verzahnungen mit Angabe der DIN-Bezeichnung).
- Die kraftmäßige Auslegung und Auswahl der Wellen-/Nabenverbindung muss seitens des Anlagenkonstrukteurs passend zu den auftretenden Kräften erfolgen.
- Alle TECDOS-Räder sind komplett mechanisch bearbeitet und einsatzgehärtet.



- erfolgt auf Anfrage
- **) Passfedernuten um 120° versetzt

Einsatzgehärtete TECDOS Taschenräder sind optimal auf das Zusammenspiel mit der TECDOS Kette ausgelegt und garantieren so einen ruhigen Lauf und hohe Lebensdauer.

TECDOS Kettenräder für Antriebe und Umlenkungen können in Einstrang- und Mehrstrangausführung gefertigt werden. **Lieferung auf Anfrage** in allen Kettengrößen TEC 6 bis TEC 260.

20

TECDOS®

Kettenführung · Kettenendbefestigung

TECDOS Kettenführungen werden eingesetzt wenn:

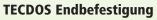
- raue Bedingungen herrschen;
- die Kette nur einseitig belastet ist;
- die Gefahr des Überspringens der Kette gegeben ist;
- ein sauberer Lauf der Kette über dem Rad gewährleistet werden muss

Unterschiede der zwei Ausführungen:

Die Auswahl der Kettenführung ergibt sich aus dem Anwendungsfall und der Einsatzumgebung. Wir beraten Sie gerne.

Kettenführung gefräst, radial teilbar

Kette	Taschen	Zeichnungs- nummer	Artikel- nummer	
TEC 6	6	44783	7906322	
TEC 12	6	H05129	7906186	
TEC 25	6	H04738	7902719	
TEC 43	6	H04673	7902294	
TEC 65	6	H04635	7902289	
TEC 140	6	H04677	7902320	
TEC 260	6	H04618	7902038	

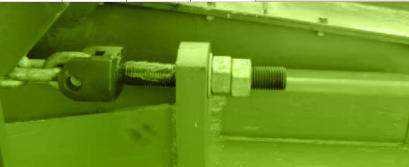


Kettenführung lasergeschnitten, radial teilbar

Kette	Taschen	Zeichnungs- nummer	Artikel- nummer	
TEC 6	6	H04783	8504484	
TEC 12	6	H05132	8504465	
TEC 25	6	H04540	8503920	

	Benennung	Kette	Betriebskraft [kN]	A (mm)	D (mm)	F (mm)	Art.Nr.
	HEBG-M12	TEC 6	7,2	103,0	79,0	32,0	7996526
	HEBG-M16	TEC 12	13,3	139,0	107,0	42,0	7993561
	HEBG-M24	TEC 25	27,2	198,0	155,0	56,0	7997341
	HEBG-M30	TEC 43	43,3	249,0	195,0	70,0	7997329
	HEBG-M36	TEC 65	65,6	303,0	237,0	82,0	7997326
	HEBG-M42	TEC 140	141	388,0	293,0	116,0	7997385
	HEBG-M48	TEC 260	262	482,0	353,0	160,0	7997420

TECDOS Endbefestigungen bestehen aus einem zerspanten Vollmaterial ohne Schweißnähte, welches zu 100 % auf Risse geprüft ist.



TOOL MOVER

Werkzeugwender für sicheres Drehen und Wenden von schweren und empfindlichen Werkzeugen.

Die Aufgabenstellung

Probleme mit herkömmlichen Dreh- und Wendevorrichtungen:

- Enormes Bedienerrisiko.
- Mögliche Beschädigung an den teuren Werkzeugen.
- Beschädigung an den Kranbremsen und Seilen.

Vorteile des TOOL MOVER

- Das Wenden der Last geschieht im Wesentlichen im Schwerpunkt und damit absolut sanft.
- Der TOOL MOVER Tisch verfügt über einen frequenzgeregelten Antrieb: sanfter Anlauf und sanftes Stoppen!
- Wegfall von Unfällen mit den empfindlichen und teuren Werkzeugen.
- Keine Gefahren mehr für die Bediener.

Eigenschaften des TOOL MOVER

- Der TOOL MOVER ist überall einsetzbar im Betrieb, da er nicht am Boden verankert werden muss und sehr kompakt ist.
- Der TOOL MOVER kann mit einem Kran (Anschlagpunkte) oder mittels Gabelstapler (Gabeltaschen) bewegt werden.
- Da der TOOL MOVER eine sehr niedrige Auflagefläche¹ hat, kann ein geöffnetes Werkzeug direkt auf dem Tisch gereinigt werden.
- Der TOOL MOVER ist mit Werkzeug schonenden PU-Platten bezogen.
- Ablage von Werkzeugen bis 32 t Eigengewicht.
- Standardmäßig mit akustischem Warnsignal beim Wendevorgang

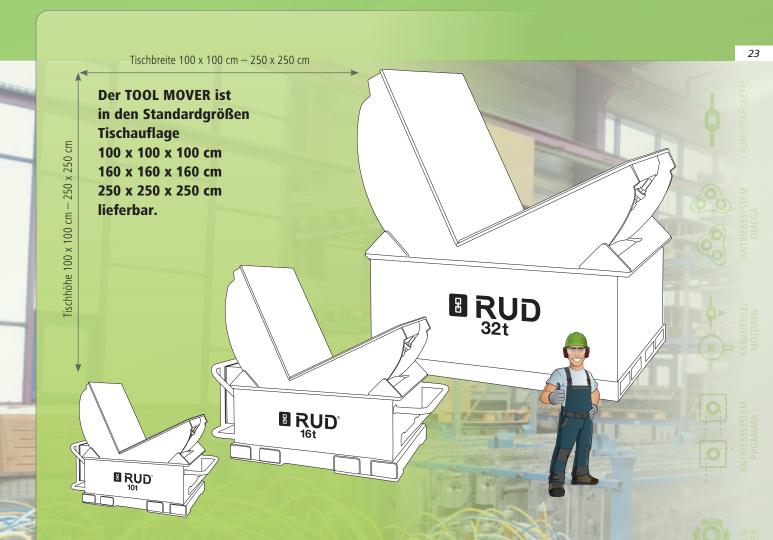
1) nur THS 10

TOOL MOVER

SAVING A LIFE IS PRICELESS

TISCHABMESSUNGEN							
Тур	1	Tischauflage in cm	2	Tragfähigkeit bis zu kg	Eigengewicht ca. in kg		
	L	Н	В				
THS 10	100	100	100	10.000	1.700		
THS 16	160	160	160	16.000	4.700		
THS 20	160	160	160	20.000	5.000		
THS 25	250	250	250	25.000	11.500		
THS 32	250	250	250	32.000	11.700		

* weitere Größen auf Anfrage



TOOL MOVER

BRUD

Werkzeugwender

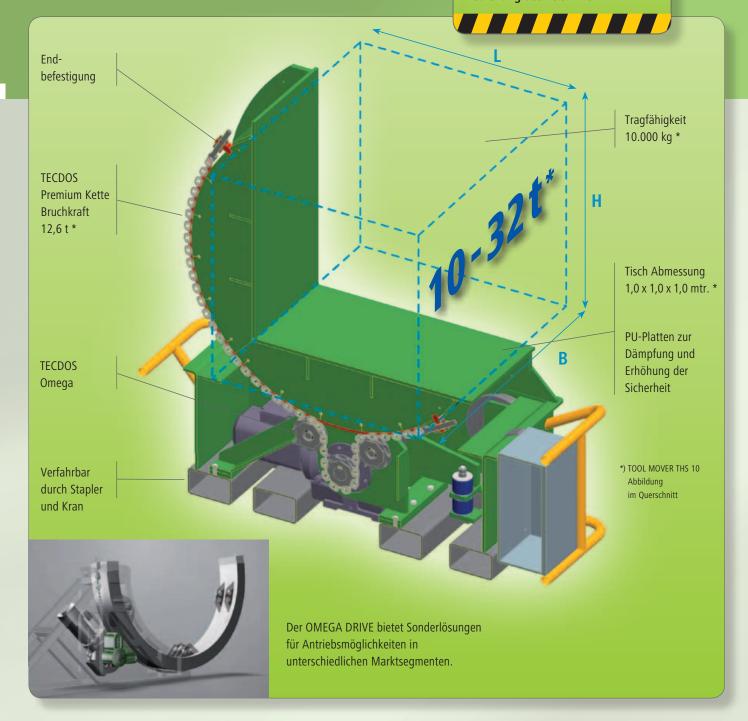
Schweres Werkzeug sicher beherrschen

- Refinanzierung <1 Jahr
- Zeit- und Kosteneinsparungen durch einfache Bedienung
- **Robuste Konstruktion**
- Wartungsfreundlich
- Einsatzfähig für verschiedenste Werkzeuggrößen
- Verschiedene Optionen wählbar (auf Ihre Anforderungen zugeschnitten)
- Flexibel einsetzbar (transportabel über Stapler oder Kran)
- Keine Gefahren für Ihre Mitarbeiter

Weitere Informationen: www.youtube.com/user/RUDKetten

Tool Mover Hotline:

Tel.: +49 -7361-504-1442



TOOL MOVER

Werkzeugwender Aufbau Wir bieten Ihnen auf Ihre Bedürfnisse zugeschnittene, individualisierte Sicherkeitskomponenten für das Werkzeug-Handling und die Bedienung des TOOL MOVER.

Die Funktionsweise des TOOL MOVER: axiale Wendevorgänge bis 180° immer im sicheren Schwerpunktbereich des Wendeguts.

TECDOS®

RUD

Montageanleitung

Hinweise zur Erzielung optimaler Betriebsverhältnisse

Montage der Antriebs- und Umlenkräder

- Antriebs- und Umlenkräder müssen so auf den Achsen montiert werden, dass sie leichtgängig angetrieben werden können.
- Die Drehbewegung darf nicht behindert oder blockiert werden.
- Die Räder müssen axial so ausgerichtet werden, dass die Kette tangential in das Rad ein- und auslaufen kann.
- Die Kette darf beim Ein- und Auslauf nicht seitlich an den Zähnen der Antriebs- und Umlenkräder anlaufen.

Montage der Kettenstränge

Die Ketten sollten so auf die Antriebsräder aufgelegt werden, dass die Schweißnaht der vertikalen Kettenglieder (stehende Kettenglieder) auf dem Rad nach außen zeigt. Die Kette darf zwischen den Antriebs- und Umlenkrädern, sowie zwischen den Rädern und einer eventuellen Kettenendbefestigung nicht verdreht werden.

Montage der Kettenführungen

Bei der Montage der Kettenführungen ist darauf zu achten, dass die Führungen in axialer und radialer Richtung zentrisch zu den Antriebsrädern ausgerichtet werden. Die Führungen sind so anzubringen, dass ein störungsfreier Kettenein- und -auslauf gewährleistet ist.

Kettenführung

Kettenführungen sind immer erforderlich, wenn die Last an der Kette nur auf einer Seite des Rades anliegt und die andere Seite nur gering belastet wird, oder unbelastet ist. An der Losseite der Kettenführung ist ein Kettenentknoter vorzusehen, damit eine eventuell verdreht einlaufende Kette ausgedreht wird.

Kettenschmierung

Die Ketten sollten den Einsatzbedingungen entsprechend in regelmäßigen Abständen geschmiert werden um adhäsiven Verschleiß in den Kettengelenken zu minimieren und die Lebensdauer der Kette zu erhöhen.

Endbefestigungen

TECDOS Endbefestigungen sind längenverstellbare Befestigungspunkte zum Anschluss von TECDOS Hochleistungsketten an Maschinen, Bauteilen und Vorrichtungen. Sie dienen zum Spannen der Kette oder zum Längenausgleich bei Mehrstrangsystemen.

- Die maximale Bauteilbelastung entspricht der maximalen Belastung der zugehörigen Rundstahlkette.
- Der Anbringungsort muss konstruktiv so festgelegt sein, dass die eingeleiteten Kräfte vom Befestigungsteil sicher aufgenommen werden können
- Die Endbefestigung muss so eingebaut werden, dass die Kraft entlang der Längsachse in das Bauteil eingeleitet wird. Eine seitliche Belastung, die zu Biegespannung in der Kette oder in der Endbefestigung führt, ist nicht zulässig. Bei der Montage muss die Endbefestigung so ausgerichtet werden, dass die Kette ohne Drall eingebaut werden kann.

Kettenvorspannung

■ Wenn keine Kettenführung vorgesehen wird, muss sichergestellt sein, dass die Kette ständig unter Vorspannung steht. Die Vorspannkraft sollte so niedrig wie möglich gewählt werden, sie muss jedoch immer höher sein als die Reibkräfte des Leertrums (Richtwert = 10 % der Normalkraft). Die Kette darf sich unter keinen Betriebsbedingungen vom Rad abheben.

Kettenkürzungen

- Bei notwendigen Kettenkürzungen sind gleichliegende Glieder an den zu kürzenden Strängen heraus zu schneiden.
- Das Herausschneiden von Kettengliedern muss sorgfältig mittels Trennscheibe oder Bolzenschneider und ohne Beschädigung der benachbarten Glieder erfolgen.
- Wärmeeinwirkung auf nicht vom Herausschneiden betroffene Glieder unbedingt vermeiden.

Schweißarbeiten

- Grundsätzlich dürfen an der TECDOS Hochleistungskette oder an den Bauteilkomponenten keine Schweißarbeiten durchgeführt werden.
- Die Verwendung der Kette als Masseverbindung bei Elektro-Schweißarbeiten an der Stahlkonstruktion ist nicht zulässig.

Verschleiß

Der Kettentrieb muss in regelmäßigen Abständen auf eventuell auftretenden Verschleiß kontrolliert werden. Bei Erreichen der Ablegereife muss das verschlissene Bauteil umgehend ausgetauscht werden.

Betriebstemperatur

RUD-Rundstahlketten dürfen bis zu einer maximalen Temperatur von 200 °C ohne Einschränkungen betrieben werden. Einsatzgehärtete Rundstahlketten der Ausführung Premium sind bis zu einer minimalen Einsatztemperatur von -20 °C zugelassen, Rundstahlketten der Ausführung Medium sind bis zu -40 °C zugelassen. Die TECDOS Hochleistungskette Extra kann sogar unter -40 °C hinaus eingesetzt werden. Wenn Rundstahlketten bei höheren, oder tieferen Betriebstemperaturen eingesetzt werden sollen, ist eine vorherige Rücksprache mit RUD erforderlich.

Überlastung

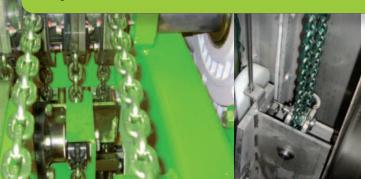
Zur Absicherung des Kettentriebes gegen Überlastung oder Blockierung sind geeignete Überlastsicherungen wie Endschalter, Rutschkupplungen, Abscherstifte oder ähnliches vorzusehen.

Schutzeinrichtungen

An den besonders gefährdeten Stellen des Kettentriebes, wie z.B. im Bereich der Antriebs- und Umlenkräder muss ein Berührungsschutz angebracht werden, der ein Eingreifen in den Kettentrieb während des Betriebes verhindert.

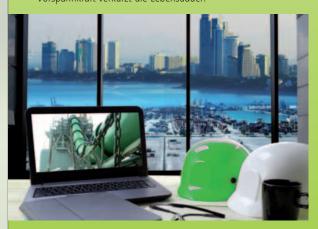
þ

0



TECDOS®

Wartung und Überwachung


TECDOS Hochleistungsketten sind wegen ihres einfachen Aufbaues unempfindlich und benötigen deshalb sehr wenig Wartung. Im Interesse einer hohen Betriebssicherheit sollten folgende Punkte beachtet werden:

Wartung

■ Bei allen Wartungsarbeiten sind die gültigen Unfallverhütungsvorschriften zu beachten. Ebenso sind die vom Hersteller der Anlage vorgeschriebenen Montage-, De- und Remontage-, Inbetriebnahme-, Betriebs- und Instandhaltungsbedingungen einzuhalten.

Vorspannung

■ Die Kettenjustierung ist regelmäßig zu kontrollieren, besonders während der Einlaufphase von neuen Ketten und/oder bei großen Schlaufenlängen. Es darf nur so stark vorgespannt werden, wie für einen einwandfreien Kettenlauf bei normalen Betriebszuständen erforderlich ist. Bei Mehrstranganlagen muss die Vorspannkraft aller Kettenstränge gleich sein. Unnötig hohe Vorspannkraft verkürzt die Lebensdauer.

Prüfung des Kettentriebes

- Die Kette muss gemäß den gültigen UV-Vorschriften in regelmäßigen Abständen, jedoch mindestens einmal jährlich geprüft werden
- Mit steigender Einsatzhäufigkeit, bei Auftreten von Verschleiß, Korrosion, Hitzeeinwirkungen und erhöhter Störanfälligkeit, müssen die Prüfintervalle verkürzt und den vorliegenden Betriebsbedingungen angepasst werden. Solange keine Erfahrungswerte zum Verschleißverhalten unter den tatsächlichen Betriebsbedingungen vorliegen, muss bei jedem Nachschmieren der Kette auch eine Prüfung erfolgen.

■ Die Prüfung erstreckt sich auf die Feststellung von äußeren Fehlern, Verformungen, Anrissen, Verschleiß und Korrosionsnarben.

Schmierung

- Durch regelmäßige Schmierung der TECDOS-Hochleistungskette kann eine 15-20fach höhere Lastspielzahl als mit einer trockenen, ungeschmierten Kette erzielt werden. Wir empfehlen, die Ketten vor der Inbetriebnahme auf ihrer gesamten Länge zu schmieren. Es ist darauf zu achten, dass alle Kettenglieder geschmiert werden. Es darf kein Kettenglied übersehen werden, da dies zu vorzeitigem Verschleiß führen könnte.
- Beim Schmieren ist darauf zu achten, dass das Schmiermittel in die verschleißbeanspruchten Kettengelenke eindringt. Besonders sorgfältig müssen Umschaltglieder geschmiert werden. Das sind die Kettenglieder, die bei konstantem Hubweg beim Umschalten von der Hub- in die Senkbewegung auf, bzw. unmittelbar am Einlauf der Antriebs- und Umlenkräder zum Stehen kommen. Diese Kettenglieder werden durch dynamische Schwingungen besonders stark belastet und müssen deshalb in kurzen Zeitabständen sorgfältig geschmiert werden, um voreilenden Verschleiß zu verhindern.
- Die Auswahl eines geeigneten Schmiermittels ist abhängig vom Einsatzort und den vorliegenden Umgebungsbedingungen. Schmiermittelempfehlung im RUD Portal unter www.rud.com

Technischer Fragebogen für **Antriebssysteme**

Bitte ausfüllen und per Fax an uns...

+49 7361 504-1523

RUD Ketten Rieger & Dietz GmbH & Co. KG Tel.: +49 7361 504-0

Fax: +49 7361 504-1373

tecdos@rud.com www.rud-tecdos.com

Firma:*			 Verantwortlicher:*	
Straße:*			·	
PLZ / Ort:*				
Datum:			Unterschrift:	
Projekt				
Aufgabe:	☐ Heben ☐ Sonstiges:		□ Ziehen	
Maximale Zugkraft in der Kette	e [kN]:	Gewicht [kg]:	Reibfaktor [µ]	
Hubgeschwindigkeit:	☐ Konstant	☐ Variabel		
Max. Beschleunigung:	m/s²		Max. Verzögerung:	m/s²
Geschwindigkeit von:	m/min		bis:	m/min
Taktbetrieb?	□ Ja	□ Nein	Taktzahl:	
Einschalt- und Ruhezeit pro Ta	kt:			
Gesamte Laufzeit täglich:	h		Pro Jahr:	h
Hubhöhe / Verfahrweg:				mm
Anzahl der Lastkettenstränge:				
☐ Neubau Antriebstaschenrad - Teilkreisc	Umbau (vorhandene G	Gehäusemaße angeben)		
Antriebswellendurchmesser:	nuciiiiesser.			mm
Vor dem Umbau verwendete K	Cettenart, -abmessung und	-bruchkraft, Laufzeit und G	rund des Ausfalles:	mm
Umwelteinflüsse:	☐ korrodierend	□ abrasiv	☐ Temperatur	☐ sonstige
Klassifikation:				
Bemerkungen:				

27

RUD Ketten Rieger & Dietz GmbH u. Co. KG Friedensinsel 73432 Aalen

Tel. +49 7361 504-1373 / Fax +49 7361 504-1543

E-Mail: tecdos@rud.com · www.rud.com

FÖRDERN UND ANTREIBEN

Kettenförderer oder Kettenantrieb, durch unsere große Erfahrung mit unterschiedlichsten Schüttgütern wie Zement, Düngemittel, Steine & Erden und vielen anderen, löst RUD ihre Förderaufgaben.

RUD Kettenschlösser Powerblock und Dominator gelten weltweit als Benchmark der Branche und werden wegen ihrer hohen Zuverlässigkeit in Hochleistungs-Bergbaubetrieben eingesetzt.

Für die Energieerzeugung mit
Kohle und Biomasse, sowie im
Bereich Recycling stellt RUD als
Technologieführer Komponente
und Gesamtlösungen auf
Basis von Rundstahlketten
und FORKY zur Verfügung. Ob
Materialzuführung, Entaschung
oder Reinigungskratzer,
RUD CRATOS bietet
die passende Lösung.

INDUSTRIAL

Weltweit ist RUD der Erstausrüster bei den führenden Hebezeugherstellern. Zusätzlich bieten wir eine Vielzahl an Rundstahlketten für unterschiedliche Industrien an.

Das RUD TECDOS Team
entwickelt und fertigt Antriebslösungen, ob für das Drehen,
Heben, Bewegen, Teleskopieren
oder Schieben. Neben dem
Komponentenprogramm stehen
nun als TECDOS Omega und Pi
Antriebe auch Komplettlösungen
zur Verfügung.