

LIFTING AND LASHING SYSTEMS

- Special Grade 100 -

See le Gr

und zugelo

BG

Prüfstelle PZNM

11

Innovation and quality take first priority at RUD. We are always leading in decisive developments.

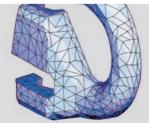
Examples in the lifting and lashing chains field:

1967: 1. Approval of quality class 5, H1-5 by the Berufs-genossenschaft (*Employers Liability Insurance Association).

1972: First chain factory to gain approval for the quality class 8, H1-8 by the BG* Technical Committee "Steel and Metal".

The first idea of a **mecano system from RUD** – foolproof connection of the correct chains and components, as well as suspension links. This idea became the standard at Ruhrkohle RAG.

1981: The first series of lifting points type RBS and RBG with a safety factor 4:1 in any direction.


1992: First chain factory to obtain certification for their quality assurance system acc. to **DIN/ISO 9001.**

1994: First chain factory to obtain approval of the BG* for their **VIP-special quality** with up to 50 % higher WLL than Grade 80.

2002: The first universal lifting point – called PPS.

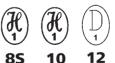
2006: First manufacturer who received the "Type Examination Certificate" from the Inspection and Certification authority PZNM of the Technical Commitee MO (*Employers Liability Insurance Association = BG), for VIP-round steel chains according to PAS 1061 (Publicity Available Specification according to the Standard DIN EN 818 Grade 100). As the First H1-10!

2007: RUD, the first manufacturer of round steel link chain, receives the approval from the BG for Grade 120 (D1-12).

The certified quality management system makes a decisive contribution towards the quality of our products. In combination with the two other certified environmental- and energy management systems the securing of the process quality and the careful and efficient use of resources results from that. Our products are characterized by highest quality and environmental sustainability.

The passion of chain manufacturing!

The round steel chain link production in Unterkochen has been running for almost 140 years. Producing chains for lifting, lashing, conveying, tire protection as well as snow and off-road chains.


Our headquarters and manufacturing plant is one of the most modern chain producing companies world wide.

Developed from a small chain forging company at the river Kocher, the RUD group has stood to the test of time to become a global player with approximately 800 motivated employees, subsidiaries and sales representatives around the world.

Almost 500 national and international protective clauses are the evidence for our progress.

The well established brand name RUD stands for quality, technical innovation and know how. Continuous research and development has enabled us not only to produce products meeting the highest expectations but also with consistent quality standards. Experience, diligence, ambition and passion are the virtues we manifest in order to remain favourite for our customers. With the above virtues in mind, RUD has successfuly entered a new century with the trust and satisfaction of our customers as our prime objective for the future.

What are tomorrow's concepts? This is one of the questions which RUD is trying to address while facing the challenge of consistently providing the best solutions to our customers.

BG and TÜV approved!

*BG = German Employers Liability Assurance Association.

CONTENTS

RUD Company Profile/Contents	Page 2/3	∎ RUD`
Benefits of the RUD-VIP system/applic. examples	4/5	Use
Assembly-fool proof/advantages	6/7	+point
RUD System	8-11	RUD System
Masterlinks & Special Masterlinks	12/13	Q Q
Masterlinks & Special Masterlinks 2 leg	14/15	R
Masterlinks & Special Masterlinks 3/4 leg	16/17	
Cobra hook – Eye hook – Foundry hook	18/19	<u> </u>
Swivel adapter for hoists/Bale hook VIP clevis self locking hook/VIP Grab hook	20/21	ð
Multi shortening claw	22/23	`
Clevis shackle/Shackle/Isolating plate	24/25	Å
Dumper truck suspension/container hooks Connecting links/Plug-in connector	26/27	0
Endless chains / length adjustment	28/29	
Balancer	30-31	<u></u>
Control link / Swivel / VRG-Connector	32/33	
Complete sling chain / Mini-/MAXI mecano system	34-39	>mini >MAXI
Spreader bars (fixed / adjustable)	40/41	
— Lifting Points (for bolting / for welding)	42-45	
ICE I20 – Lashing systems / Tensioners	46-49	
– Inspection/Service/Maintenance	50/51	
General information	52/53	Info
Quality in Pink-WLL overview (ICE, VIP, Grade 80)	54/55	

VIP SLING CHAINS IN RUD SPECIAL QUALITY CLASS 10

VIP-proven since 1994 in the hardest applications!

• Despite having the same chain diameter, an up to 30 % increase in the WLL in comparison to grade 80.

• Chain dimensions from 4 to 28 mm. WLL from 0.6 t (Mini 1-leg) to 126 t (2x MAXI double leg).

• Distinctive fluorescent pink powder coating and clear "VIP" stamp on every chain link and component. Distinctive in comparison to other quality classes. Surface quality is comparable to a zinc plated surface.

• Chain diameters 16, 20, 22 and 28 mm in VIP special quality replace the 18, 22, 26 and 32 mm chain diameters of quality grade 8. Smaller chain sizes, hence a considerable reduction of weight which facilitates easy handling.

Multifunctional WLL

identification tag: Owing to it's special shape, it facilitates simple inspection of the three wear criteria for sling chains (diameter, elongation of pitch and

overload). The inspection data can be documented on the tag.

Heat indicator:

The pink powder coating changes its colour with temperatures exceeding 200°C. Chain must not be used after being subject to temperatures exceeding 380°C. At this temperature the VIP colour changes to a deep black with small bubbles, clearly indicating that it has been overheated.

• Master link collection for every crane hook:

The chain connecting link VRG is attached to the corresponding master link in a permanent but flexible way. The fool – proof clevis connection allways ensures that only the correct chain diameter can be fitted. The collection of master links range from the smallest VBK size for the high tensile hoist hooks up to crane hook No. 50 with Bi = 250 mm in 1 to 4 leg assembly versions.

• The patented **multi shortening claw** can be fitted on the chain leg at any required position. No additional chain and coupling parts are required. The robust safety bolt with a spring prevents unintentional hooking out of the chain in both loaded and unloaded conditions. Ideal chain link shaped pocket support, thus no reduction in the WLL (DIN 5692).

• VIP Cobra hook:

The compact design of the VIP Cobra hook with no protruding hook tip is far superior and safer than the common clevis sling hook. Supplied complete with a forged and tempered safety latch that locks into the hook tip protects against lateral bending. The safety latch is supported by a triple coiled double leg. The enlarged hook tip prevents misuse. Wear edges on both sides of the hook protect against abrasion of the chain when hauling the chain assemblies. Gauge marks on the hook enable easy inspection for the elongation of the width of the hook opening.

• VIP automatic clevis hook:

Extremely robust design. The hook locks automatically when lifting the load and can only be opened by activating the protected unlocking lever at the back of the hook. No protruding hook tip. Large mouth width **size F.**

• VIP shortening hook: According to DIN 5692:

With no reduction of WLL and a thickened hook tip to avoid misuse e.g. incorrect fitting of the chain. Ideal chain support facilitated by the calibrated lugs. The U-bend insertion slot protects against accidental chain disengangement.

• World wide unique: The VIP Mecano System with the 4 mm and 28 mm chain.

VIP-Quality – "Made in Germany!"

Application examples – VIP –

YOUR BENEFITS...

VIP Stamping – on every chain link

VIP-stamped chains are manufactured with smaller tolerances in the inner width (size W1) and are coated with the fluorescent colour pink. In connection with the VIP stamped, pink coloured components, whose special clevis design has been perfectly harmonised, a distinctive chain connection is realised.

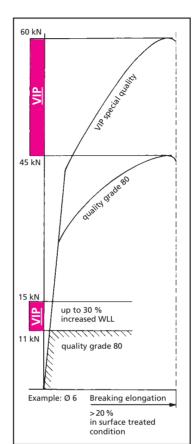
10 or 8 S

The approval of RUD's special quality VIP by the BG* is documented in short chain link intervals with the following: H1 refering to the manufacturer's number i.e 1 = RUD and 8 S or 10 meaning Grade 100.

Verification of quality

At regular intervals, the chains are stamped with a serial and batch number. This identification ensures a continuous record tracking of the manufacturing and proof load data even after a period of 10 years. After all we stick to our VIP quality.

Patented heat indicator


In high temperature environments the special fluorescent pink powder coating permanently changes its colour. Above 380°C the colour changes permanently to black. If this happens the chain assembly must be taken out of service (refer to page 7). The geometric construction and tolerances of the VIP chains are aligned to a higher quality class. On request, Corrud DS, a 20 times more red rust resistant component than zinc plating, can be supplied.

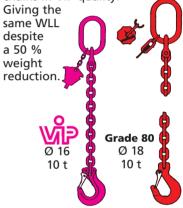
VIP Grade 100

A consequential enhancement of the RUD – Mecano system with quality grade 80, which has stood to the test of time for over 30 years. V – distinguished, I – in, P – pink.

Using the patented VIP identification tag, the chain can easily be inspected for wear and pitch elongation. Please refer to pages 10 and 50.

BG* = Employers Liability Insurance Association.

The highly qualitative VIP chains and components are provided with a **duplex surface** protection. This comprises of two processes i.e: Pre-treatment and pink powder coating. Due to this two process procedure, a relatively better surface protection is achieved in comparison to zinc plating.


The highly dynamic VIP-Mecano system and chains achieves a dynamic strength higher than the standard values. Tested with over 20,000 load cycles and with a factor ratio of 1.5 of their actual WLL.

An up to 30 % increase in the WLL in comparison to quality class 8

Material CrNiMo alloy steel, specially tempered, high toughness. Minimum breaking elongation ≥ 25 % in natural black, ≥ 20 % in pink coated.

Less sensitive to notching and hydrogen embrittlement than quality grade 80. Bending tests acc. standard DIN EN 818-2, bending min $f = 0.8 \times d$ is by far exceeded. Ratio of WLL : proof load : breaking load is given by 1 : 2.5 : 4. Owing to a special heat treatment procedure developed by RUD, the highly dynamic RUD – VIP-chains are less sensitive to mechanical abrasion and damages. Hence an increased life expectancy is achieved.

Quality grade 80 chains whose nominal diameter exceeds 18 mm can be substituted by a one size less nominal diameter chains in VIP quality.

RUD VIP- and Grade 80 chains are likewise components according to DIN EN 1677, designed for a dynamic loading of more than 20000 load cycles at a 50 % overload (1.5 x WLL). The BG (German Employers Liability Insurance Association) recommends: At a high number of load cycles (continuous operation), the bearing stress must be reduced according to FEM/ISO classification 1Bm (M3 acc. to EN 818-7); f.e. by using the next bigger chain diameter.

Subject to technical modifications!

LIFTING MEANS

Application

examples of

the versatile

VIP system.

YP +point

RUD 🚯 System

R

A

><mark>mini</mark>« >MAXI«

P

FOOL-PROOF »IN PINK«

FOOL-PROOF »IN STAMPING«

FOOL-PROOF »IN PINK+STAMPING«

The proven clevis connection system has been further enhanced with the new VIP range. With it's dimensional adjustments and colour (VIP chains and components in pink) arrangement of the chains and the components, a fool-proof assembly is assured.

Clevis dimension "X" avoids the connection of a larger VIP chain. VIP chains are manufactured with tighter tolerances in the inner width (size W1). The connection bolt diameter "size Y" avoids the connection of the next smaller VIP chain size.

Result:

Only chains and components with the same WLL are distinctively assembled together.

Attention:

VIP chains (2) 8S or 10 must only be connected with RUD components. RUD does not assume liability for VIP chains and VIP components which are combined with competitor products. Observe user instruction resp.

owner's manual! Use only original RUD spare parts. Employer's insurance association requires:


Chain slings of quality grade 100 must not be used in combination with chains and components from other manufactures.

Assembly

VIP-Fool-proof Mecano assembly

The VG-bolt of the next smaller size drops out.

Slot of the tensioning sleeve must be visible facing to the front! The tensioning sleeve must be used only once.

The special fluorescent VIP powder coating permanently shows the temperature to which the VIP chain has been exposed. Operated in the prohibited temperature ranges i.e. above 380°C, the pink colouration turns black with bubles on the surface. Replace the VIP chains or return them to the supplier for repair.

VIP heat indication European patent EP 677681

Info

Inspection and documentation made easy!

Regular inspections of lifting applications are an essential requirement to ensure the highest standard of safety is met. Dated methods of inspections involve copious amounts of paper work and time consuming manual processes.

But due to the **RFID-technology** (Radio-Frequency-**ID**entification) these time consuming methods and huge amount of paper work become history.

RFID technology has been specifically designed to track and identify applications quickly and effortlessly making inspections and documentation of products a quick and easy process.

Radio Frequency Identification (RFID) continues to evolve as a major technology – modernizing the way documentation and inventory mangement is done

RUD-ID-POINT®

The **RUD-ID-POINT**[®] (RFID chip) is embedded into the component. The RFID chip is branded with a unique identification number.

RUD-ID-READER

The robust RUD reading devices capture the identification number of the **RUD-ID-POINT**[®] and transfer it to the **RUD-ID-NET**[®] application (software) or alternatively to your PC applications (e.g. WordPad, MS Word, MS Excel, SAP) etc.

RUD-ID-BETTER-CHECK

RUD-ID-NET®

The resourceful **RUD-ID-NET**[®] application (software) will support your product administration and documentation.

Subject to technical modifications!

RUD-ID-Points®

Reference no.: 7902580

Reference no.: 7903680

Reference no.: 7901001

BRUD

8 mm

RUD-ID-READER

Reference no.: 7901524 (Bluetooth)

RUD-ID-NET®

Subject to technical modifications!

The innovative and unrivalled **RUD-ID-POINT**[®] performs in varied conditions ranging from -80°C temperatures to an astonishing +270°C. They hold a high level of water and pollution resistance and are extremely robust against damage. The RFID-chip does not harm the capability of the components.

RUD-ID-POINT[®] 8 mm or 4 mm (13.56 MHz HF):

Press-fit transponder (in metal). No glue necessary. Size: 8 mm x 3.25 mm or 4 mm x 3.50 mm. The usage of **RFID-Chips** embedded into a component is a patented technological innovation.

RUD-ID-LINK (13.56 MHz HF)

Connecting link with integrated transponder for chains, wire ropes, etc. Size: dia. 8 mm x 35 mm open

RUD-ID-GLUE[®] (13.56 MHz HF)

Adhesive metal transponder for many other working means, subject to regular checking (clamps, grippers, cross bars, etc) Size: dia. 19 mm x 4.5 mm

Additional colors and design on request.

The RUD-ID-EASY-CHECK® readers are compatible with the RUD-ID-POINTS®

as well as with common high frequency transponders/chips (ISO 15693). The transfer of the identification number is carried out either by USB or Bluetooth and can be linked up with the **RUD-ID-NET**[®] application (software), almost all Office applications (WordPad, MS Word, MS Excel, Open Office) and also with SAP or other programs.

RUD-ID-BETTER-CHECK® (13.56 MHz):

USB-reader for identifying the unique number of the **RUD-ID-POINT**[®].

RUD-ID-DISPLAY-CHECK® (13.56 MHz):

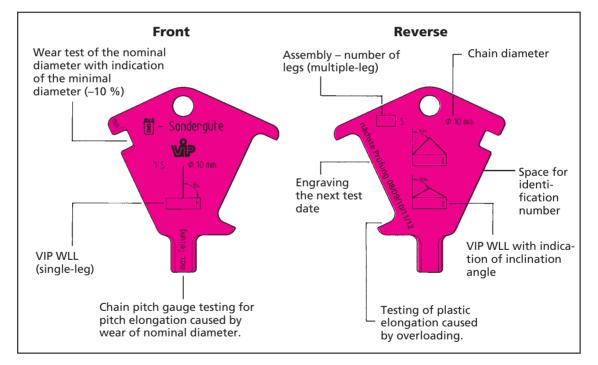
The unique identification number is shown on the **RUD-ID-POINT**[®] which is then displayed on the integrated LCD-display. The data can be transferred to any end device capable for Bluetooth 15 metres away.

The RUD-ID-NET[®] application (software) has many advantages; it is easy to use, requires no digital maintenance and ensures you manage inspections of products effectively.

- It enriches your data by providing detailed product information, inspection dates, test reports and automatic test reminders to selected employees. The benefits are endless.
- Product information and documentation such as inspection reports and product data can be easily accessed via the RUD web portal.
- Upgradeable software for different work equipment which has to be inspected regularly (f.e. work platforms, roller shutter).

ନ ନ AD ><mark>mini</mark>< >MAXI< F Info

VIP round steel link chain Grade 10


Size d in mm Ø	4	6	8	10	13	16	20	22	28
Pitch P in mm	12	18	24	30	39	48	60	66	84
inside, width W1 bi min. mm	5.2	7.8	10.4	13	17	21	26	28.6	36.4
WLL in t	0.63	1.5	2.5	4.0	6.7	10	16	20	31.5
Proof load MPF min. kN	15.7	37.5	62.5	100	166	250	395	500	772
Breaking load BF min. kN	25	60	100	160	265	400	630	800	1240
Weight kg/m	0.36	0.85	1.5	2.4	4.0	6.0	9.5	12.3	18.6
Surface:	Dup	olex pro	tection	= pre-tr	reatmen	it + pink	powde	r coating	9
Order no:	7984399	7100477	7100478	7100479	7100480	7100481	7983689	7100482	7900670
Surface:	Co	rrud-DS	-black						
Order no:	7987349	7988020	7988021	7988754		7903259			

Minimal ultimate elongation: natural black \geq 25 %, Pink \geq 20 %

Stamped: VIP identification stamped in every chain link, manufacturing number and the BG approval stamp H1

VIP identification tag with an integrated chain testing gauge

Testing wear of nominal diameter

Testing for pitch elongation caused by wear of nominal diameter

Point

ystem

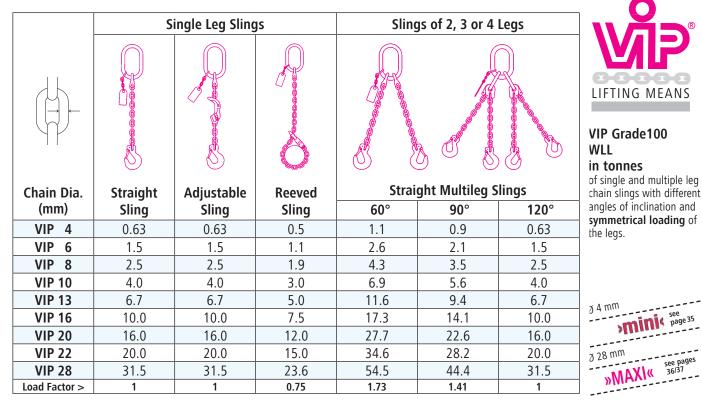
Q

H

R

3

8


) 4 9

20

ġ

><mark>mini</mark>« >MAXI «

1

	Basket Sling	2 Leg Basket Sling*	Reeved Slings of 2, 3 or 4 Legs		
Chain Dia.					
(mm)	60°	60°	60°		
VIP 4	0.8	1.4	0.8		
VIP 6	2.0	3.4	2.0		
VIP 8	3.3	5.6	3.3		
VIP 10	5.2	9.0	5.2		
VIP 13	8.7	15.1	8.7		
VIP 16	13.0	22.5	13.0		
VIP 20	20.8	36.0	20.8		
VIP 22	26.0	45.0	26.0		
VIP 28	41.0	70.9	41.0		
Load Factor >	1.3	2.25	1.3		

Temperature	When using Chain Slings at temperatures >200°C (392°F), the WLL has to be reduced. Working Load in % at temperatures of:								
Considerations	-40°C up to +200°C	200°C up to 300°C	300°C up to 380°C						
	100%	90%	60%						

**only 2 x 2 leg type available

In case of choke hitch applications, reduce

A reduction of 20 % for the choke hitch and bundling (sharp edge) is already within the calculation.

WLL by 20 %.

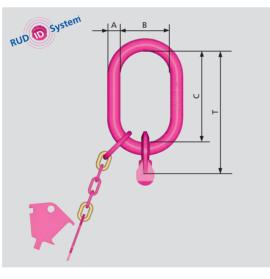
*NB: Ensure that appropriate rated master and intermediate links are used for the 2 leg basket sling.

11

VIP Master link for single leg VBK1

> for smaller load hooks

VBK 1 master link with an in all multi-directional movable welded VRG connector. Thus ensuring that the correct chain diameter and number of legs can be connected. Complete identification tag with an integrated testing gauge. Connecting bolt and tensioning sleeve are pre-assembled.


Can also be supplied as end link (VB-1) without VIP identification tag.

The size corresponds with that of connecting

						k type N 568 tachm ooks o	0 0			
Chain	WLL t	Туре	А	В	С	Т	kg/pc.		Ref. No	
6	1.5	VBK 1 – 6	(VB 1 – 6)	13	25	54	82	05	71 00 675	(71 00 220)
8	2.5	VBK 1-8	(VB 1 – 8)	16	34	70	107	0.7	71 00 676	(7100221)
10	4	VBK 1 – 10	(VB 1 – 10)	18	40	85	131	1.1	71 00 677	(71 00 222)
13*	6.7	VBK 1 – 13	(VB 1 – 13)	22	50	115	174	2.0	71 00 678	(71 00 223)
16*	10	VBK 1 – 16	(VB 1 – 16)	26	65	140	211	3.3	71 00 679	(71 00 224)
20*	16	VBK 1 – 20	(VB 1 – 20)	32	75	170	264	7.6	71 04 092	(71 04 093)
22*	20	VBK 1 – 22	(VB 1 – 22)	36	110	200	294	9.0	71 00 680	(71 02 060)
28**	31.5	-	(VB 1 – 28)	62	130	150	215	13.7	_	(79 00 641)**

VIP Master link for single leg VAK 1

for standard crane hooks e.g. DIN 15401

VBK 1 master link with an in all multi-directional movable welded VRG connector. Thus ensuring that the correct chain diameter and number of legs can be connected. Complete identification tag with an integrated testing gauge. Connecting bolt and tensioning sleeve are pre-assembled.

The size corresponds with that of connecting link type A according to DIN 5688.

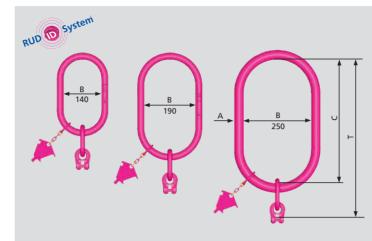
Master link VAK1 can be used for crane hooks up to No. DIN 15401. - standard size hooks

ize:	6 –	No.	2.5	8 -	No.	2.5
	10 –	No.	5	13 -	No.	6
	16 –				No.	25
	22 –	No.	25			

Can also be supplied as end link (VA-1) without identification tag.

Chain	WLL t	Туре	A	В	С	Т	kg/pc.		Ref. No.	
6	1.5	VAK 1–6	(VA 1–6)	13	60	110	138	06	71 00 681	(7100237)
8	2.5	VAK 1–8	(VA 1-8)	16	60	110	147	0.9	71 00 682	(7100238)
10	4	VAK 1 – 10	(VA 1–10)	18	75	135	181	1.4	71 00 683	(7100239)
13*	6.7	VAK 1 – 13	(VA 1–13)	22	90	160	218	2.4	71 00 684	(7100240)
16*	10	VAK 1 – 16	(VA 1–16)	26	100	180	250	3.7	71 00 685	(7100241)
20*	16	VAK 1–20	(VA 1 – 20)	40	180	340	434	14.7	71 04 089	(7104090)
22*	20	VAK 1–22	(VA 1 – 22)	45	180	340	434	16.5	71 00 686	(7102092)
28**	31.5	VAK 1–28	_	100	250	280	360	64.3	79 00 642**	

S


*Attention: Master link size 13/16/20/22 with a special identification tag (refer to page 16). A testing gauge will be additionally supplied with the master link sizes 13/16/20/22 **see MAXI-pages 36/37 Subject to technical modifications!

VSAK1 master link is supplied complete with a welded VRG connector. Therefore only the correct chain diameter and number of legs can be connected. The identification tag with an integrated testing gauge is already attached.

Connecting bolt and tensioning sleeve are pre-assembled.

Owing to a larger gradation of the inner width "B" of the VSAK, improper use (BGR 500) is almost eliminated and wear of the crane hook is minimised. Additional connective components for over size hooks are not necessary.

	A 1	
LIFTIN		
		ILAND

R

R

de la

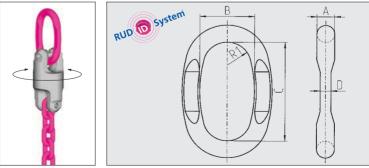
mini

»MAXI«

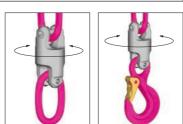
ð

VIP special master link 1-leg VSAK 1

VSAK – size B =	140	for standard hooks up to.	No. 16	DIN 15401
				DIN 15401
VSAK – size B =	250	for standard hooks up to.	No. 50	DIN 15401


Chain	WLL t	Туре	Α	В	С	Т	kg/pc.	Ref. No.
6	1.5	VSAK 1 – 6/140	18	140	260	342	1.7	71 00 687
8	2.5	VSAK 1 – 8/140	22	140	260	367	3.1	71 00 688
10	4	VSAK 1 – 10/140	26	140	260	391	4.4	71 00 689
13*	6.7	VSAK 1 – 13/140	32	140	260	433	7.6	71 00 690
16*	10	VSAK 1 – 16/140	32	140	260	471	8.1	71 00 691
Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
8	2.5	VSAK 1 – 8/190	22	190	350	457	4.0	71 00 692
10	4	VSAK 1 – 10/190	26	190	350	481	6.0	71 00 693
13*	6.7	VSAK 1 – 13/190	32	190	350	523	9.9	71 00 694
16*	10	VSAK 1 – 16/190	36	190	350	560	13.5	71 00 695
Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
10	4	VSAK 1 – 10/250	36	250	460	590	12	71 00 696
13*	6.7	VSAK 1 – 13/250	36	250	460	634	13	71 00 697
16*	10	VSAK 1 – 16/250	40	250	460	670	14	71 00 698
20*	16	VSAK 1 – 20/250	45	250	460	724	25	71 04 100
22*	20	VSAK 1 – 22/250	51	250	460	754	33	71 00 699

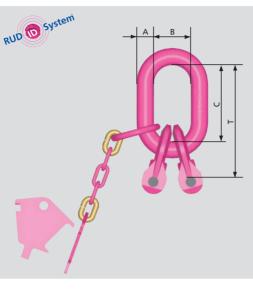
Forged Special-Link (in pink) for small load hooks, extreme lightweight construction – centre flattening respective to the corresponding chain diameter.


Fits to the Universal-Swivel-PowerPoint from page 33 or to the Lifting Point PowerPoint-B.

Additionally pay attention to the correct WLL assignment while assembling.

Subject to technical modifications!

Chain	WLL t	Туре	А	В	С	D	R_1	kg/pc.	Ref. No.
4	0.63	PP 0.63t - B	9	35	65	4	15	0.1	79 89 531
6	1.5	PP 1.5t - B	11	35	65	6	15	0.14	85 02 173
8	2.5	PP 2.5t - B	13	40	75	8	18	0.2	85 02 174
10	4	PP 4t - B	16	45	95	10	20	0.32	85 02 175
13	6.7	PP-VIP Ø 13-B	21	60	130	13	25	1.02	85 02 176
16	10	PP-VIP Ø 16-B	24	65	140	16	28	1.4	85 02 177




VIP-**Master link** 2-leg VBK 2

for smaller load hooks

VBK 2 master link is supplied with two welded VRG connectors. Therefore only the correct chain diameter and number of legs can be connected. The identification tag with an integrated testing gauge is already attached. Connecting bolt and tensioning sleeve are pre-assembled.


The size corresponds with that of connecting link type B according to DIN 5688. Sufficient for attachment to small load hooks on hoisting devices.

Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
6	2.1/1.5	VBK 2 – 6	13	25	54	82	0.5	71 00 700
8	3.5/2.5	VBK 2 – 8	16	34	70	107	0.9	71 00 701
10	5.6/4.0	VBK 2 – 10	18	40	85	131	1.4	71 00 702
13*	9.5/6.7	VBK 2 – 13	22	50	115	174	2.7	71 00 703
16*	14/10	VBK 2 – 16	26	65	140	211	4.4	71 00 704
20*	22.4/16	VBK 2 – 20	32	75	170	264	11	71 04 097
22*	28/20	VBK 2 – 22	36	110	200	294	13.7	71 00 705

VIP-**Master link** 2-leg VAK 2

for standard crane hooks

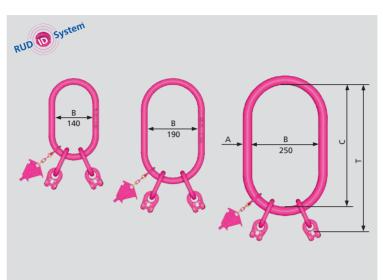
VBK 2 master link is supplied with two welded VRG connectors. Therefore only the correct chain diameter and number of legs can be connected. The identification tag with an integrated testing gauge is already attached. Connecting bolt and tensioning sleeve are pre-assembled.

The size corresponds with that of connecting link type A according to DIN 5688.

Can be used for crane hooks up to No. DIN 15401. simple hook.

Size:	6 –	No.	2.5	8	3 –	No.	5
	10 –	No.	6	13	3 –	No.	8
	16 –	No.	10	20) —	No.	25
	22 –	No.	25				

Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
6	2.1/1.5	VAK 2 – 6	13	60	110	138	0.7	71 00 706
8	3.5/2.5	VAK 2 – 8	18	75	135	172	1.4	71 00 707
10	5.6/4.0	VAK 2 – 10	22	90	160	206	2.3	71 00 708
13*	9.5/6.7	VAK 2 – 13	26	100	180	238	3.9	71 00 709
16*	14/10	VAK 2 – 16	32	110	200	270	6.6	71 00 710
20*	22.4/16	VAK 2 – 20	40	180	340	434	16	71 04 095
22*	28/20	VAK 2 – 22	45	180	340	434	20	71 00 711
28**	45/31.5	VAK 2 – 28	100	250	280	360	64.3	79 00 642


**see MAXI-pages 36/37

VSAK 2 master link is supplied with two welded VRG connectors. Therefore only the correct chain diameter and number of legs can be connected. The identification tag with an integrated testing gauge is already attached.

Connecting bolt and tensioning sleeve are pre-assembled.

LIFTING MEANS

special master link 2-leg VSAK 2

Owing to a larger gradation of the inner width "B" of the VSAK, improper use (BGR 500) is almost eliminated and wear of the crane hook is minimised. Additional connective components for over size hooks are not necessary.

VSAK – Size B =	140	for standard hooks up to	No. 16	DIN 15401
VSAK – Size B =	190	for standard hooks up to	No. 32	DIN 15401
VSAK – Size B =	250	for standard hooks up to	No. 50	DIN 15401

Chain	WLL t	Туре	Α	В	С	Т	kg/pc.	Ref. No.
6	2.1/15	VSAK 2 – 6/140	18	140	260	342	2.3	79 94 070
8	3.5/2.5	VSAK 2 – 8/140	22	140	260	367	3.5	79 94 071
10	5.6/4.0	VSAK 2 – 10/140	26	140	260	391	5.2	79 94 072
13*	95/6.7	VSAK 2 – 13/140	32	140	260	433	9.2	79 94 073
16*	14/10	VSAK 2 – 16/140	32	140	260	471	12.5	79 94 074
Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
8	3.5/2.5	VSAK 2 – 8/190	22	190	350	457	4.3	79 94 075
10	5.6/4.0	VSAK 2 – 10/190	26	190	350	481	6.5	79 94 076
13*	9.5/6.7	VSAK 2 – 13/190	32	190	350	523	10.6	79 94 077
16*	14/10	VSAK 2 – 16/190	36	190	350	560	15.6	79 94 078
Chain	WLL t	Туре	Α	В	С	Т	kg/pc.	Ref. No.
10	5.6/4.0	VSAK 2 – 10/250	36	250	460	591	12.8	79 94 079
13*	9.5/6.7	VSAK 2 – 13/250	36	250	460	634	14.9	79 94 080
16*	14/10	VSAK 2 – 16/250	40	250	460	671	20.5	79 94 081
20*	22.4/16	VSAK 2 – 20/250	45	250	460	724	32.5	79 94 083
22*	28/20	VSAK 2 – 22/250	51	250	460	754	43	79 94 084

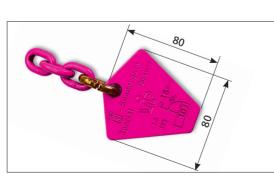
*Attention: Master link size 13/16/20/22 with a special identification tag (refer to page 16). A testing gauge will be additionally supplied with the master link sizes 13/16/20/22 Info

VIP-Master link 4-leg VAK 4

VAK 4 leg master link is supplied with four welded VRG connectors. Therefore only the correct chain diameter and number of legs can be connected. The identification tag with an integrated testing gauge is already attached. Connecting bolt and tensioning sleeve are pre-assembled.

The size corresponds with that of connecting link type A and B according to DIN 5688.

Can be used for crane hooks up to $\boxed{\text{No.}}$ acc. to DIN 15401.


Size:	6 – 1	Vo. 5	8 –	No. 6
	10 – 1	No. 8	13 –	No. 10
	16 – 1	No. 16	20 –	No. 32
	22 – 1	lo. 32		

Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
6	3.1/2.2	VAK 4 – 6	18	75	135	217	1.5	71 00 742
8	5.2/3.7	VAK 4 – 8	22	90	160	268	2.8	71 00 743
10	8.4/6.0	VAK 4 – 10	26	100	180	311	4.6	71 00 744
13*	14/10	VAK 4 – 13	32	110	200	373	8.3	71 00 745
16*	21.2/15	VAK 4 – 16	36	140	260	470	13.7	71 00 746
20*	33.6/24	VAK 4 – 20	51	190	350	614	39	71 04 181
22*	42/30	VAK 4 – 22	51	190	350	644	42	71 00 747

*Attention: Master link size 13/16/20/22 with a special identification tag (refer to page 16). A testing gauge will be additionally supplied with the master link sizes 13/16/20/22

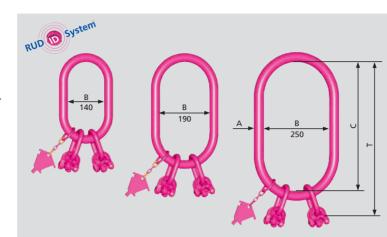
3 leg master links VAK 3 and VSAK 3 do have the same reference numbers as 4 leg master links. No separate stock exists.

VIP-Spare parts VKZA

VIP identification tag for chain diam	neter
Diameter	Ref. No.
Ø 13 mm/16 mm/20 mm/22 mm/28 mm	79 89 739

VKPL

VIP identification tag as *chain testing gauge, for diameters 13mm/16 mm/20 mm/22 mm


Chain	Туре	Ref. No.
13	VKPL-13	71 00 667
16	VKPL-16	71 00 672
20	VKPL-20	71 04 045
22	VKPL-22	71 01 832
28	MAXI-Tester-28	79 00 709

VSAK 4 master link is supplied with four welded VRG connectors. Therefore only the correct chain diameter and number of legs can be connected. The identification tag with an integrated testing gauge is already attached.

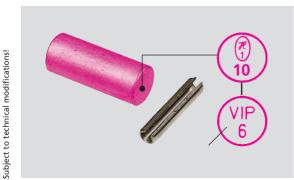
Connecting bolt and tensioning sleeve are pre-assembled.

For the respective crane hooks refer to page 13.

VIP-Special master link 4-leg VSAK 4

(D)

ļ


><mark>mini</mark>« >MAXI«

1

Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
6	3.1/2.2	VSAK 4 – 6/140	22	140	260	342	3.3	71 00 748
8	5.2/3.7	VSAK 4 – 8/140	26	140	260	367	5.0	71 00 749
10	8.4/6.0	VSAK 4 – 10/140	32	140	260	391	7.9	71 00 750
Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
6	3.1/2.2	VSAK 4 – 6/190	22	190	350	432	3.6	71 00 751
8	5.2/3.7	VSAK 4 – 8/190	26	190	350	457	5.5	71 00 752
10	8.4/6.0	VSAK 4 – 10/190	32	190	350	481	9.2	71 00 753
13*	14/10	VSAK 4 – 13/190	36	190	350	523	13.5	71 00 754
Chain	WLL t	Туре	Α	В	С	Т	kg/pc.	Ref. No.
10	8.4/6.0	VSAK 4 – 10/250	36	250	460	591	14.8	71 00 755
13*	14/10	VSAK 4 – 13/250	40	250	460	634	20.4	71 00 756
16*	21.2/15	VSAK 4 – 16/250	51	250	460	671	34.5	71 00 757
20*	33.6/24	VSAK 4 – 20/250	54	250	460	754	45.5	**79 93 210
22*	42/30	VSAK 4 – 22/250	56	250	460	763	53.6	**79 93 211

*Attention: Master link size 13/16/20/22 with a special identification tag (refer to page 16). A testing gauge will be additio-nally supplied with the master link sizes 13/16/20/22

**with VVS-connection

VIP identification tag with integrated testing gauge. Chain Туре Ref. No. 79 87 054 VK2V-1 Λ _____

_	4	VKZA-4	79 87 054
_	6	VKZA-6	71 00 804
	8	VKZA-8	71 00 805
	10	VKZA-10	71 00 806
	13	VKZA-13	71 00 807
_			

VG bolts with tensioning sleeves

	5	
Chain	Туре	Ref. No.
4	VG-4/retaining pin 4	79 84 300/51 299
6	VG-6/retaining pin 6	71 01 594/59 289
8	VG-8/retaining pin 8	71 01 595/57 490
10	VG-10/retaining pin 10	71 01 596/59 021
13	VG-13/retaining pin 13	71 01 597/59 022
16	VG-16/retaining pin 16	71 01 598/59 023
20	VG-20/retaining pin 20	71 02 717/59 386
22	VG-22/retaining pin 22	71 01 599/59 387
28	VG-28/retaining pin 28	79 00 708/63416

VIPspare parts VKZA

VG/SP

VIP-Cobra hook with safety latch VCGH

Extremely robust improved version. No protruding hook tip.

Forged safety latch engages into the tip of the hook and is thus protected against lateral bending.

A triple-coiled, double-leg spring in stainless steel. Thickened tip of the hook prevents misuse. Wearing edges on both sides.

Gauge marks for measuring the width of the hook opening.

Patented wear markings are showing the moment of replacement acc. To BGR 500, Chapter 2.8 without the necessity of measuring.

Fmax. = Maximum distance between the gauge marks.

Chain	WLL t	Туре	Α	В	С	D	F	F max.	G	Т	kg/pc.	Ref. No.
6	1.5	VCGH 6	38	22	16	20	25	45	72	76	0.4	71 00 498
8	2.5	VCGH 8	50	28	20	28	30	52	95	97	0.9	71 00 499
10	4.0	VCGH 10	60	36	26	36	35	65	118	108	1.5	71 00 500
13	6.7	VCGH 13	76	46	30	37	40	73	135	126	2.7	71 00 501
16	10.0	VCGH 16	83	56	36	49	48	87	161	152	4.3	71 00 502
20	16.0	VCGH 20	112	68	50	69	63	114	218	195	10.0	71 03 385
22	20.0	VCGH 22	117	78	50	74	63	114	223	198	11.5	71 01 603
28	31.5	VCGH 28	150	101	69	88	90	155	295	275	26.4	79 00 638

VIP-Cobraeye hook with safety latch VCÖH

For special wire rope slings, VIP chain slings, PowerPoint combinations or the universal swivel (refer to page 29).

Extreme durable, compact design, with pink powder coating.

No protruding hook tip.

The forged, quenched and tempered safety latch, engages into the hook tip.

Therefore protected against lateral bending. Triple coiled, stainless steel double leg spring. Thickened hook tip to avoid improper use.

Wear edges on both sides.

Gauge marks for measuring the width of the hook opening.

Researcher

markings are showing the moment of replacement acc. To BGR 500, Chapter 2.8 without the necessity of measuring. Fmax. = Distance between the gauge marks, see VCGH data above.

Chain	WLL t	Туре	А	В	С	D	Е	F	G	Н	Т	kg/pc.	Ref. No.
4	0.63	VCÖH 4	18	18	12	13	14	18	52	8	75	0.14	85 02 323
6	1.5	VCÖH 6	24	22	16	22	24	25	73	11	98	0.5	85 02 203
8	2.5	VCÖH 8	32	28	20	28	31	30	95	13	126	0.8	85 02 142
10	4.0	VCÖH 10	38	36	26	36	39	35	118	17	150	1.6	85 02 145
13	6.7	VCÖH 13	48	45	30	37	48	40	135	21	170	2.9	85 02 204
16	10	VCÖH 16	63	56	36	49	58	48	161	27	208	4.2	85 02 146

Subject to technical modifications!

18

Considerably larger mouth width than VCGH, but without a safety latch. Use only where unintentional unhooking is impossible.

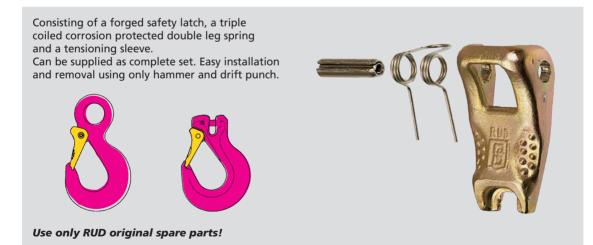
Inappropriate for overhead lifting!

When using foundry hooks, special attention must be paid and a risk assessment must be carried out before using.

Robust cross section (size C/G) is resistant against increased lateral forces. Specially designed wearing edges to protect the chain link, compare the dimension "E". Connecting bolt and tensioning sleeve are preassembled.

Gauge marks for measuring the width of the hook opening.

Fmax. = Maximum distance between marked points.



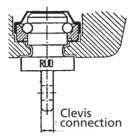
LIFTING MEANS

VIP-Foundry hook VWH

Chain	WLL t	Туре	Α	В	С	D	Е	F	F max.	G	Т	kg/pc.	Ref. No.
6*	1.5	VWH 6	32	24	24	32	22	50	63	24	90	0.44	71 00 210
8*	2.5	VWH 8	41	31	24	42	29	64	81	32	121	1.0	71 00 211
10	4.0	VWH 10	46	37	30	50	36	76	96	37	130	1.7	71 00 212
13*	6.7	VWH 13	58	44	31	64	46	90	127	47	168	3.0	71 00 213
16*	10.0	VWH 16	66	50	39	75	56	100	129	55	190	4.7	71 00 214
20*	16	VWH 20	96	80	73	102	80	136	183	80	277	15.1	79 98 157
22*	20	VWH 22	96	80	73	102	80	136	183	80	277	15.1	79 98 158

*weight optimized in Skeletto-Technology and patented wear marks.

Chain Ref. No. Туре kg/pc. 4 Si-Set VMH-4 0.04 79 87 901 6 0.04 Si-Set VCGH-6 71 00 299 8 Si-Set VCGH-8 0.07 71 00 300 10 Si-Set VCGH-10 0.09 71 00 301 13 Si-Set VCGH-13 0.15 71 00 302 0.24 16 Si-Set VCGH-16 71 00 303 20 Si-Set VCGH-20 0.40 71 01 604 22 Si-Set VCGH-22 0.40 71 01 604 28 Si-Set VCGH-28 1.6 79 00 640 Safety latch set for VCGH



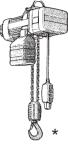
Hoist Swivel adapter **HWA**

• Supplied complete with original Demag ball bearing Manufactured from hightempered special steel

• tested acc. to EN 1677 • suitable for single leg

snatch blocks and for double leg lower blocks • suitable for all RUD clevis Mecano components

*with


VB-link

Application examples:

*with

VCGH

for Demag hoists

*with VVGSCH

for Demag-DK- and DC-holsts

Туре		WLL	Clevis	kg/pc.	Ref. No.
		t	connection		
HWA 6 DK 400•	DC 1+2 up to 250 kg	0.4	6	0.15	7985570
HWA 6 DK 800•	DC 5 up to 500 kg	0.8	6	0.30	7985571
HWA 8 DK 800•	DC 5 up to 500 kg	0.8	8	0.40	7985572
HWA 8 DK 1250•	DC 10+20 up to 1000 kg	1.25	8	0.55	7985573
HWA 10 DK 2500•	DC 20** 1000-2000 kg	2.5	10	0.90	7985574
HWA 13 DK 5000		5.0	13	1.3	7985575

for Den	nag-PK-ho	ists	
Туре		WLL.	Ref. No.
		kg	
HWA	6 PK (1)	250	51 287
HWA	6 PK (2)	500	51 288
HWA	8 PK (2)	500	51 293
HWA	8 PK (5)	1000	51 294
HWA 1	0 PK (10)	2000	51 295

only in combination with Demag DK bottom block also suitable for type series DC-Pro, DCS-Pro and DC-COM ** •

VIP-**Bale hook** VBMH with ballbearing swivel

н

The bevelling on the back of the hook simplifies the horizontal hook insertion between the bales. The clevis connection enables a direct chain connection and the integrated ball bearing swivel prevents the chain from automatically spinning.

Suitable only for the transport of bundled bale packages.

Not suitable for choke lifts!

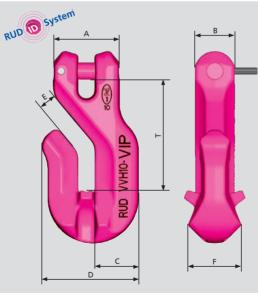
Inappropriate for overhead lifting!

When using bale hooks, special attention must be paid and a risk assessment must be carried out before using.

Chain	WLL t	Туре	А	В	С	Т	kg/pc.	Ref. No.
8	2.5	VBMHWA – 8	35	18	61	381	2.5	79 91 478
10	4.0	VBMHWA –10	35	18	61	381	2.5	79 89 017

- Optimized weight by innovative structure design (Skeletto).
- Locking device designed ergonomically, easy to handle with anti-slip-surface no danger of bruise.
- Wear distance ridges which protect the first chain link.
- Thickened tip of the hook prevents incorrect an dangerous use of the hook tip.
- Marker points to check the width of the hook on inspection (often copied).
- Patented wear markings are showing the moment of replacement acc. To BGR 500, Chapter 2.8 without the necessity of measuring.

VIP-Self-locking hook VAGH (S)


Chain	WLL t	Туре	А	В	С	D	Е	F	F _{max}	Т	kg/pc.	Ref. No.
8	2.5	VAGH (S)-8	40	30	27	28	97	44	60	121	1.0	79 00 046
10	4.0	VAGH (S)-10	49	37	30	31	107	48	66	135	1.5	79 00 047
13	6.7	VAGH (S)-13	61	48	36	40	133	61	81	169	2.9	79 00 048

- No reduction of the VIP-WLL.
- Thickened hook tip to avoid misuse e.g; in-correct insertion of the chain.
- The calibrated tooth lugs facilitate an optimal chain positioning in the hook.
- The curved insertion opening prevents the chain from easily falling out in compliance with DIN 5692.
- Connecting bolt and tensioning sleeve are pre-assembled.

Subject to technical modifications!

e Shortening by means of VVS and VVH

ning Endless eans chain by VS means VH of VVH

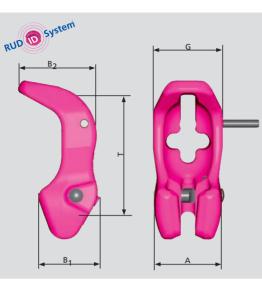
Chain	WLL t	Туре	А	В	С	D	Е	F	Т	kg/pc.	Ref. No.
6	1.5	VVH 6	34	18	20	44	7.5	23	53	0.27	79 88 658
8	2.5	VVH 8	38	22	25	54	9.5	33	64	0.35	79 87 319
10	4.0	VVH 10	47	28	31	68	12	42	80	0.8	79 87 320
13	6.7	VVH 13	60	36	40	87	15	47	103	2.2	79 87 321
16	10.0	VVH 16	75	45	50	108	18.5	57	125	3.5	79 88 669
20	16.0	VVH 20	92	58	63	138	24	76	162	8.4	85 03 630
22	20.0	VVH 22	102	62	69	151	26	83	179	11.0	85 03 631

VIPshortening hook VVH

Special designed hook tip to avoid misuse.

Attention:

Standard for shortening elements DIN 5692! All RUD shortening components do already fulfil these requirements.



VIP-Multishortening claw **VMVK** EP0736150

Attention:

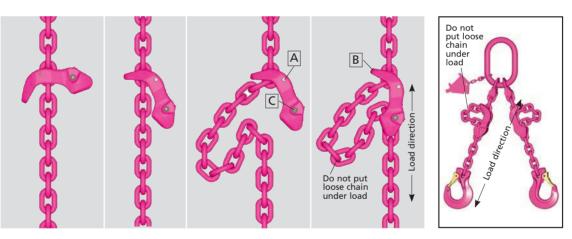
Standard for shortening ele-ments DIN 5692! All RUD shortening components do already fulfil these requirements.

After decades of success the RUD shortening claw has been further enhanced.

Fitted on a continuous chain strand at any required position.

Fitted permanently on the chain leg at any required position, no additional chain coupling devices are required.

It can either be mounted or easily moved to any position along the chain leg.

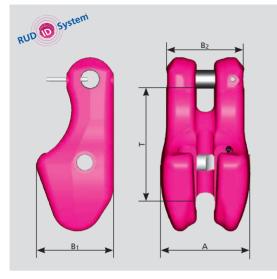

The ideal link shaped chain pocket facilitates even wearing of the chain thus no reduction of the WLL. A robust safety bolt with spring prevents acciden-tal loosening of the chain in both loaded and unloaded condition.

In case of a mounted but not firmly fixed VMVK, please adhere to the instructions marked "Attention" below.

Complies with DIN 5692.

No.
072
760 (
761
762
763
)

VMVK Fitting and Handling


A Securing pin

B Locking grove

C Securing bolt

For the 20, 22 and 28 mm VIP-chain, only the standard shortening claw is available in VIP quality.

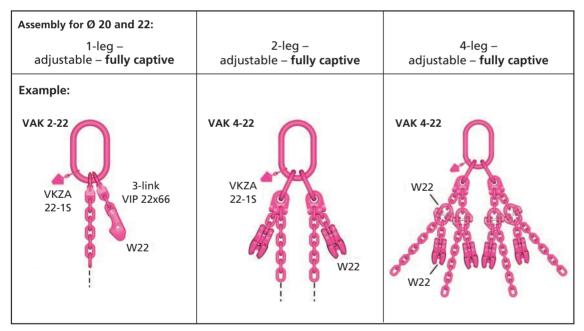
- Pocket support is geutle to chain
- no reduction of WLL
- light construction

The robust safety bolt supported by a spring avoids an unintensional dismounting of the chain in unloaded as well as loaded conditions. Complies with DIN 5692.

VIPshortening claw VV-20/22/28

2

(D)

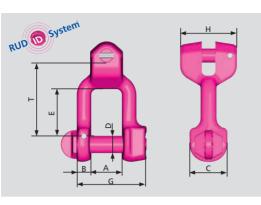

><mark>mini</mark>« >MAXI«

P

(FF

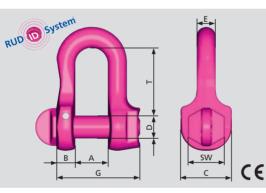
Info

Chain	WLL t	Туре	А	B ₁	B ₂	Т	G	kg/pc.	Ref. No.
20	16	VV 20	117	101	102	140	_	8.8	79 94 856
22	20	VV 22	117	101	102	140	-	8,5	79 94 855
28	31.5	VV 28	150	130	130	170	-	16.9	79 00 643


Attention: Fit with a 1-leg VKZA-tag

Attention: Fit with a 2-leg VKZA-tag

VIPfool-proof shackle **VV-GSCH**

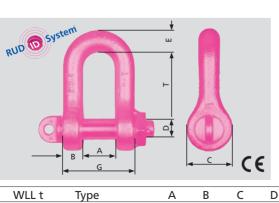


For technical description of the shackle refer to VV-SCH.

- Optimal dimensions max. mouth width with smallest shackle bolt.
- Due to a turned clevis connection, the shackle is extremely resistant against bending.

Chain	WLL t	Туре	А	В	С	D	Е	G	Н	Т	kg/pc.	Ref. No.
6	1.5	VV-GSCH 6	17	8	22	10	21	40	28	36	0.15	71 02 022
8	2.5	VV-GSCH 8	21	10	26	12	32	48	39	48	0.26	71 02 023
10	4.0	VV-GSCH 10	27	13	34	16	35	62	45	61	0.65	71 02 024
13	6.7	VV-GSCH 13	33	17	42	20	41	81	59	78	1.35	71 02 025
16	10.0	VV-GSCH 16	38	22	49	24	49	95	69	96	2.5	71 02 026
20	16.0	VV-GSCH 20	47	27	60	30	57	119	88	108	3.9	71 04 284
22	20.0	VV-GSCH 22	53	30	76	36	72	130	95	132	6.7	71 02 027

VIPfool-proof shackle **VV-SCH**



High-tensile patented version with an integrated safety thread in the shackle bracket. On both sides, smooth bolt support in the shackle. Bolt is turnable. No bending strength in the thread, it has only a securing function.

Pre-assembled with tensioning sleeve. Long term securing by driving in a tensioning sleeve. Special thread, thus fool-proof compared to other shackle bolts! Surfa-ce is pink powder coated.

Chain	WLL t	Туре	А	В	С	D	Е	G	SW	Т	kg/pc.	Ref. No.
6	1.5	VV-SCH 6	14	8	22	10	8	36	17	30	0.1	71 00 607
8	2.5	VV-SCH 8	17	10	26	12	10	44	19	36	0.2	71 00 608
10	4.0	VV-SCH 10	21	13	34	16	13	56	24	49	0.4	71 00 609
13	6.7	VV-SCH 13	27	17	42	20	17	75	29	63	0.8	71 00 610
16	10.0	VV-SCH 16	33	21	49	24	21	90	36	73	1.5	71 00 611

VIP-Shackle high-tensile VC-SCH

Shape acc. to DIN 82 101-C with an attached fixed nut. Securing by split-pin. Surface is pink powder coated.

		ļ		- C	ε							odificat
WLL t	Туре	А	В	С	D	Е	F	G	Т	kg/pc.	Ref. No.	cal m
16.0	VC-SCH 4.0	42	27	60	30	29	27	96	91	2.7	79 06 438	echni
25.4	VC-SCH 5.0	47	30	72	36	33	30	107	111	4.4	79 06 439	o te
31.5	VC-SCH 6.0	53	34	78	39	37	34	121	120	5.9	79 84 333	bject t

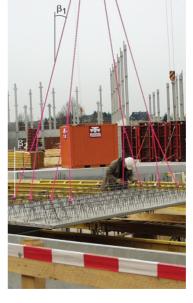
tions! Sub

VIP-Isolating Assembly VIP-Isolating latch VGIL + VV GSCH

Up to 1000 V

Chain	WLL t	Туре	T1	T ₂	L	Weight/	Ref. No.	Ref. No.
						kg	V-SIG	VGIL
6	1.5	VGIL-6	71	35	357	1.4	79 84 258	79 84 161
8	2.5	VGIL-8	91	43	431	2.4	79 84 259	79 84 162
10	4.0	VGIL-10	108	55	525	4.3	79 84 260	79 84 163
13	6.7	VGIL-13	132	65	643	8.2	79 84 261	79 84 164
16	10.0	VGIL-16	166	75	765	13.1	79 84 262	79 84 165

There is a danger of current flow when welding is carried out on suspended loads. The isolating latch isolates up to max. 1,000 V by means of a special non conductive plastic bearing of the clevis shackle bolt. Max operational temperature is +80°C.



Ensures even load distribution by means of a compensating pulley with a VVGSCH-8. There is neither overload nor deformation of the concrete element. 8 mm $\ll \beta_1$: max. 45° 6 mm $\ll \beta_2$: max. 30°

RUD VIP Cobra hook: with a robust hook securing, small, handy and easy to hookin in both diagonal and upper chords.

VIP-Balancing assembly "VIPoctopus" for concrete elements

Chain	WLL	Туре	Ref. No. complete	Ref. No. clevis shackle with a deflection pulley
8/6	5.25	VIP-octopus 8 x 5000	79 87 582	79 87 366

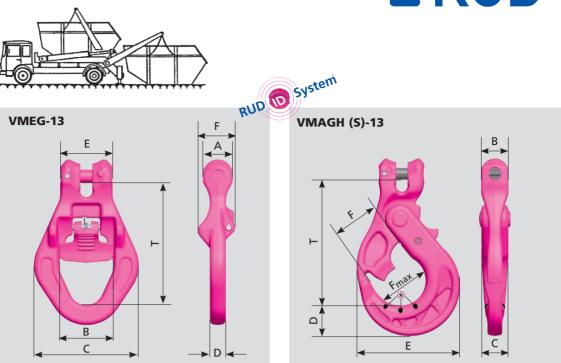
25

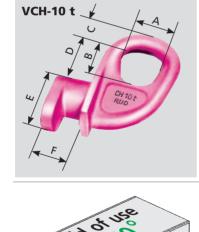
Info

VIP-Dumper truck suspensionring VMEĞ

VIP-Dump truck-**Automatic-Clevis hook** VMAGH (S)

Patented wear markings are showing the moment of replacement acc. To BGR 500, Chapter 2.8 without the necessity of measuring.




For 1D, 1E and 1F Containers (< 9 ft), they can be lifted by the upper corner edge with a 4-leg sling chain with a maximum inclination angle of 30°.

VMEG and VMAGH(S):

Suitable for standardized dump truck studs, quick attachment and anyway safe hold.

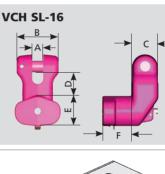
Chain	Туре	WLL t	А	В	С	D	Е	F	Fmax	Т	Weight/kg/pc.	Ref. No.
13	VMEG-13	6.7	37	66	128	20	64	46	-	149	2.6	79 02 657
13	VMAGH (S)-13	6.7	61	37	36	40	137	50	81	167	3	79 02 114

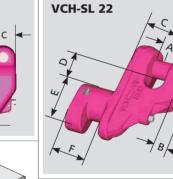
VCH - 10 t suitable for ISO container edges. Fix connection by VVS or VVGSCH. Loose component for hook mounting.

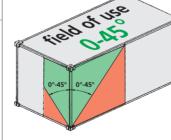
WLL t

10.0

10.0


20.0


Type


VCH – 10 t

VCH - SL 16

VCH - SL 22

Suitable for ISO-Container edges. The container hook is equipped with a patented securing device. Therefore the hook cannot fall out of the ISO edge. Easy handling. Inserting: Without operating of securing

device. Taking out: Only possible when locking

pin is released. RUD VCH-SL hooks are suitable for ver-

С

24

42

48

В

70

71

62

Α

56

18

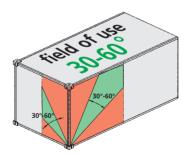
24

tical lifts and up to max. 45° inclination angle (see graphic chart). Clevis connection suits 16 mm VIP chain.

D

83

40


45

Е

76

50

76

VCH - SL 22 suitable for ISO container edges. Clevis connection for the 22 mm VIP VIP chain size can be reduced to 16 mm when using a VRG-16 connector.

With patented locking mechanism.

kg/pc.

3

2.5

4.2

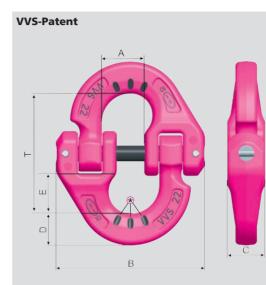
F

45

47

45

Ref. No.


85 03 115

85 02 313

51 005

- The all-purpose robust connecting link
- Lifting points, shakles and plate clamps can be attached into the halves of the connecting link.
- Form and kinking free function are patent pending
- No kinking of pre-assembled chain possible.
- The halves are exchangeable between each other.
- No movement of securing pin and therefore no damage of the common securing springs or -sleeves.

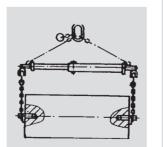
* Patented wear markings are showing the moment of replacement acc. To BGR 500, Chapter 2.8 without the necessity of measuring.

M P
LIFTING MEANS

VIP-Connecting link VVS-Patent

World champion in load capacity!

Туре	WLL	А	В	С	D	Е	Т	Weight	Ref. No.
	t	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	kg/pc.	
VVS 6	1.5	18	55	13	11	17	46	0.12	79 01 438
VVS 8	2.5	24	70	18	14	23	61	0.29	79 01 439
VVS 10	4.0	28	88	22	17	27	74	0.57	79 01 440
VVS 13	6.7	34	111	28	23	33	93	1.2	79 01 441
VVS 16	10.0	39	130	33	27	37	108	2.0	79 01 442
VVS 20	16.0	42	154	41	34	41	124	3.7	79 01 443
VVS 22	20.0	48	172	44	37	46	138	4.8	79 01 444
VVS 28	31.5	69	228	58	47	67	189	10.6	79 01 445


VERG to be used as a plug-in bolt for transportation of tools and other similar lifting purposes when bores are the only specified lifting points available.

Minimum diameter D, refer to the table, minimum bolt length L is 2 x D. Maximum diameter D = 48 mm. Bore diameter = D + 1 mm. We recommend that for vertical lifting purposes, the VERG should be used with a spreader bar or a cross beam.

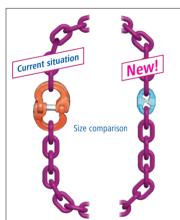
Attention:

Subject to technical modifications!

In the event of any lifting procedure, attachment should always be at the collar. The plug-in connectors are non stock items and their production is subject to customer requirement. Thus bear in mind the respective delivery periods.

	Chain	WLL t	Туре	D _{min}	D*	L*	A min.	Т
	6	1.5	VERG – 6	17			11	20
	8	2.5	VERG – 8	22	lucionto sino		15	26
	10	4.0	VERG – 10	0 28 Indicate sizes L and D			18	33
	13	6.7	VERG – 13	36	when ordering!		24	42
•	16	10.0	VERG – 16	45			29	54

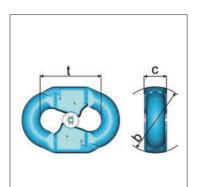
VIP-Plug-in connector VERG


Endless chain ICE-120 and VIP-100 with compact connecting-elements

Endless chain with H-Connector								
VIF	VKR-H	Ø6mm	Ø 8 mm	Ø 10 mm	Ø 13 mm	Ø 16 mm		
8		2.4	4.0	6.4	10.6	16		
+R	0-45°	1.65	2.75	4.4	7.5	11.0		
\mathcal{O}	45-60°	1.2	2.0	3.2	5.3	8.0		
ICI	E IKR-H	Ø6mm	Ø 8 mm	Ø 10 mm	Ø 13 mm	Ø 16 mm		
8		2.88	4.8	8.0	12,8	20.0		
+ 8 _	0-45°	2.0	3.3	5.5	8.8	14.0		
	45-60°	1.44	2.4	4.0	6.4	10.0		
·	1					14/11 1. [4]		

* For extreme abrasive usage we recommend to use ICE chains

WLL in [t]


Endless chain with Dominator

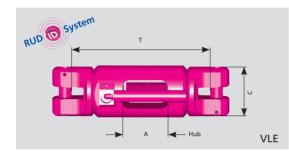
VIP	VKR-D	Ø 20 mm	Ø 22 mm	Ø 28 mm		
8		25.6	32.0	50.0		
R_	0-45°	17.6	22.0	35,.5		
0	45-60°	12.8	16.0	25.0		
		1		WLL in [t]		

RUD System

H-Connector (ICE and VIP)	Chain	A [mm]	B [mm]	T [mm]	Weight [kg/pc.]	Ref. No.
IH-6/VH-6	6	34	19.6	18	0.11	7901922
IH-8/VH-8	8	45	25.5	18	0.11	7901453
IH-10/VH-10	10	56	31.5	30	0.55	7901454
IH-13/VH-13	13	73	40	39	1.16	7901455
IH-16/VH-16	16	89	49	48	2.16	7901924

Dominator (VIP)	For chain Ø [mm]	WLL [t]	A [mm]	B [mm]	T [mm]	Weight [kg/pc.]	Ref. No.	
Dominator 22 x 86 for VIP 20 x 60	20	16	85	26	86	1.2	56295	ions!
Dominator 26 x 92 for VIP 22 x 66	22	20	95	33	92	1.8	58915	nical modifications!
Dominator 34 x 126 for VIP 28 x 84	28	31.5	119	40	126	4.1	58917	Subject to technical

28



Exact length adjustment for chain assemblies

Length of chains can be adjusted precisely by right and left hand drive thread with a toggle (ICE-CURT-GAKO) or with a ratched (VLE). Adjustment is only permitted in unloaded

condition.

ICE-CURT-K-GAKO*-components replace the current VKSPS models.

ICE-CURT-K-GAKO

(D)

mini

>MAXI<

1

VLE

Chain Ø	Туре	WLL lifting [t]	Adjustabel Range [mm]	C [mm]	Tmin [mm]	Ref. No.
6	ICE-CURT-K-6-GAKO*	1.8	140	_	260	7904448
8	ICE-CURT-K-8-GAKO*	3.0	170	-	350	7904449
10	ICE-CURT-K-10-GAKO*	5.0	170	-	362	7904450
13	ICE-CURT-K-13-GAKO*	8.0	300	-	530	7904451
16	ICE-CURT-K-16-GAKO*	12.5	350	-	612	7904452
20	VLE 20	16.0	140	110	363	7997322
22	VLE 22	20.0	140	110	363	7994668
28	VLE 28	31.5	175	138	478	790772

Force balancing lifting of loads

• f.e. erecting of tower segments of wind towers

WLL lifting [t]

- Pentagon shaped wheel for the deviation of chains
- Ballbearing suspension for shackles
- Small size

Chain Type

- connection with high tensile shackles
- Replaces wire rope snatch blocks
- Decelerated Pentagon wheel to avoid that chains runs to one side when no load is applied.

We'll kindly consult you with your lifting needs!

pitch

XXXX			
	Weigh [kg/pc	t Ref. no. .]	
210	25	7903925	

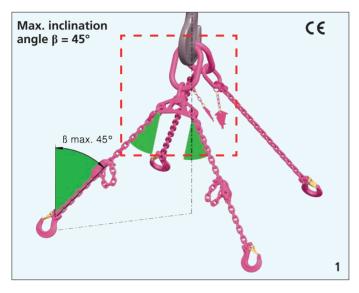
2	1	5	5	(
2	1	5	5	
	1	-		
	+	-	, 	
	3	4	2	
6	5	6	5	-
7	7	7	2	2
		Ì	ļ	Į
	1			
•		1	1	1
	3	9	9	
()	8	3	

VIP

Chain

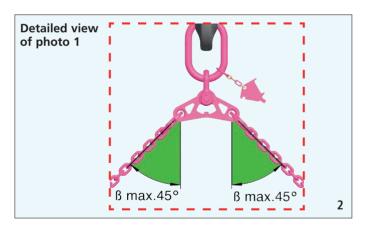
block

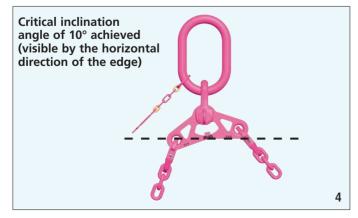
Info


FF

_	Ø		0-7°	7-20°	20-45°		bore dia. Ø D [mm]	Connecting element	[mm]	[kg/pc.]	
	16	VCB-16	20	18.5	14	50	45	VV-GSCH-22	approx. 210	25	7903925
,	22	VCB-22	40	37.5	28	80	68	Bow shackle 42.5 t	approx. 285	56	7900835

Connection on top



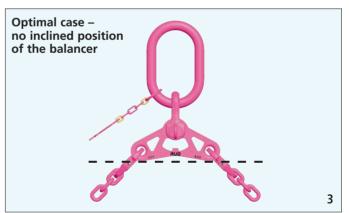

VW – VIP-Balancer

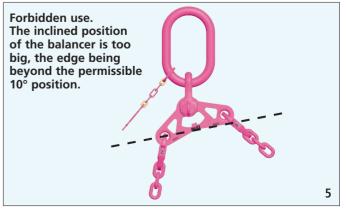
When using the VIP assembly with Balancer, you have to consider the following:

- The load has to be symmetrical
- The inclination angle β must not be beyond 45° (see graphics 1 and 2)
- The inclination position of the balancer must not exceed 10° (see graphics 3, 4 and 5)
- For detailed information on the VIP-Balancer, please refer to operation manual

With a 4-leg assembly, maximum 3 legs can be considered as bearing only, in unfavourable cases 2 ones only **Our advice:**

By using the VIP 2x2 assembly with Balancer in the shown configuration the **load will equally be distributed** to all 4 legs, resulting in a **33 % increased WLL** compared with a standard 4-leg assembly (refer to table).

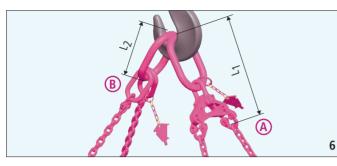

Comparison VIP 4-leg assembly / VIP 2x 2-leg assembly with balancer


	5 ,	5,
Chain	WLL VIP	WLL [t]
[mm]	4-leg assembly	VIP 2x 2-leg assembly with
	0-45°	balancer up to angle $\beta = 45^{\circ}$
6	3.15	4.2
8	5.25	7.0
10	8.4	11.2
13	14	19.0
16	21	28.0
20	33.6	45.0
22	42	56.0

For higher WLL's with angle β = 15° or β = 30°, please refer to operation manual.

Attention: The 2-leg assembly with balancer must not be used as 2-leg assembly in stand-alone version. Any working means used for lifting of loads have to avoid that the load may unintentionally shift in a dangerous way (see BetrSichV, annexe 1, paragr. 3.2.3).

In case of unsymmetrical loads, please contact the manufacturer. We will always be prepared to assist you!

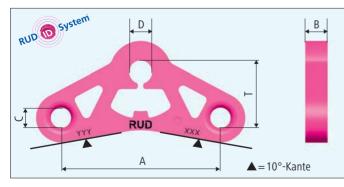


Subject to technical modifications!

Assembly of VIP-Balancing head VWK-2S

The VIP-Balancer head VWK-2S (A) comprises:

- VA link with identification tag
- VIP shackle
- VIP-Balancer
- 2 VIP-Connecting links


* Special master link with internal width = 190 available on request

** Special master link with internal width = 250 available on request

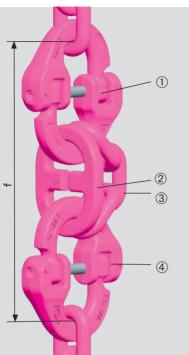
Chain [mm]	Type VIP-Balancer head	Sizes VAK and VA link [mm]	Connection at top	Connection at bottom	Pitch of balancer head L1 [mm]	Weight of balancer head [kg/pc.]	Art. No. VIP-Balancer head
6*	VWK-2S-6	18 x 75 x 135	VV-SCH10 (4t)	VVS 6	276	1.95	7904502
8*	VWK-2S-8	22 x 90 x 160	VV-SCH13 (6.7t)	VVS 8	343	3.99	7904503
10**	VWK-2S-10	26 x 100 x 180	VV-SCH16 (10t)	VVS 10	403	7.35	7904504
13**	VWK-2S-13	32 x 110 x 200	VC-SCH 4,0 (14t)	VVS 13	475	13.42	7904505
16**	VWK-2S-16	36 x 140 x 260	VC-SCH 5,0 (22.4t)	VVS 16	599	23.53	7904506
20**	VWK-2S-20	51 x 130 x 350	VC-SCH 6,0 (31.5t)	VVS 20	717	35.32	7904507
22**	VWK-2S-22	51 x 130 x 350	Shackle (40t)	VVS 22	823	49.98	7904508
Chain [mm]	Type VIP 2-leg master link f with balanc	or assemblies	s VAK and VA link [mm]	Pitch 2-leg VAK L2 [m	2-	Veight leg VAK kg/pc.]	Art. No. 2-leg VAK
6*	VAK 2S-6		18 x 75 x 135	217		1.36	7904509
8*	VAK 2S-8		22 x 90 x 160	268		2.4	7904510
10**	VAK 2S-10) 2	26 x 100 x 180	311		4.0	7904511
13**	VAK 2S-13	3 3	32 x 110 x 200	373		6.9	7904512
16**	VAK 2S-16	5 3	36 x 140 x 260	470		11.5	7904513
20**	VAK 2S-20)	51 x 90 x 350	614		32.8	7904514
22**	VAK 2S-22	2	51 x 90 x 350	644		35.0	7904515

VW – VIP-Balancer

Subject to technical modifications!

- Connection for balancer at top: connection by shackle
- Connection for balancer at bottom: VIP-Connectors
- Easy visibility of the critical inclined position of 10° by the special shape at the bottom side of the balancer
- Powder coated in VIP pink
- For detailed information regarding the VIP-Balancer, please refer to the operation manual
- Including RUD-ID-Point[®].

	Chain [mm]	Туре	WLL balancer 0-45°	T1 [mm]	T2 [mm]	B [mm]	Weight [kg]	Art. No.
	6	VW-6	2.1	110	46 (42)	15	0.49 (0.4)	7904366 (7983128)
	8	VW-8	3.5	150	59 (56)	20	1.15 (1.0)	7904369 (7983129)
	10	VW-10	5.6	180	76 (70)	25	2.4 (2.2)	7904371 (7983130)
5	13	VW-13	9.5	240	91 (97)	30	4.37 (4.1)	7904374 (7982669)
	16	VW-16	14.0	300	120 (120)	35	8.8 (8.1)	7904254 (7983131)
	20	VW-20	22.4	300	123 (123)	45	10.7 (12.4)	7904725 (7983135)
	22	VW-22	28.0	350	138 (138)	50	15.4 (17.1)	7904726 (7983142)


Values in brackets () = deviating values of the former VIP balancer

VIP-Overload indicator complete VCG

Unique RUD product!

The safety sensation

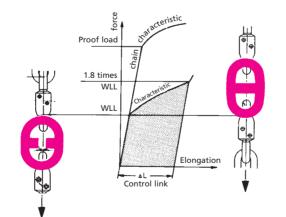
Immediate visual indication of overload - due to the specially calibrated RUD control link VCG. Although stationary fitted it can easily be replaced by means of the **Combi-lock VVS consisting of:**

① Combi-lock	Easy hammer mounting
VVS-U	(fool-proof chain
(see page 27)	connection)
② Control link VCG	With indicator bars and a calibrated slot width (nominal mm)
③ VIP chain, 3 links (see page 8)	Additional securing element besides the control link in side connection
④ Combi-lock	Easy assembly
VVS	(fool-proof chain
(see page 27)	connection)

Control link VCG

		100		
Control lin				
Type	WLL	Initial size	Weight	Ref.
	t	nom. (mm)	kg	No.
VCG – 6	1.5	4	0.06	79 87 623
VCG – 8	2.5	6	0.10	79 87 046
VCG -10	4	7	0.20	79 87 626
VCG -13	6.7	10	0.40	79 88 245
VCG -16	10	11	0.70	79 89 743
VCG –20	16	12	1.10	79 92 549
VCG -22	20	16	1.90	79 92 551

Overload indicator VCG (complete)

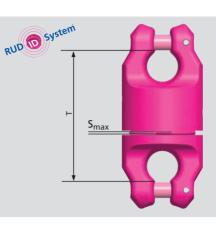

Overiouu ii	iuicatoi	a ca (comb		
Nom. size	WLL	single	build	Weight
chain mm	t	parts	length (mm)	kg
6	1,5		115	0.3
8	2,5	VVS	151	0.5
10	4	VCG	198	1.2
13	6,7	3 links	232	2.1
16	10	Chain	291	4.5
20	16	VVS	345	8.8
22	20		382	121

If the two indicator bars are not closed after overload (slot width > 0.5 mm), the user may install a new control link.

Should the overload repeatedly occur, a bigger chain size has to be used. If the bars are closed or even bent up, the chain has to be removed from operation and be examined (as per BGR 500).

Hints for use Immediate visual indication of overload –

due to the specially calibrated RUD control link VCG.



Do not exceed permissible WLL!

The calibrated slot width corresponds with the indicated nominal size. Chain strand overloaded! Clearly visible through the indicator. Slot width will decrease with increasing overload. The closing of the indicator implies that the WLL has been exceeded by 80 % to 100 %!

The following applies to both versions:

The BGR stipulates that twisted slings are not to be loaded. This requirement is automatically achieved by the ball bearing swivel - swivelling under load. Not designed for continuous use.

Special universal swivel PowerPoint:

À patented clevis connection design hence a universal connection which is loadable from any direction and facilitates the shortest combination possibilities. Only RUD-approved VIP chains and components must be used.

1. VIP Cobra-Eye Hook VCÖH, see page 18 2. B-Link for PowerPoint PP-(WLL)-B, see page 13 **Note:** VIP chain connection is designed fool proof. When assembling component 1 and 2, please pay attention to the correct Working Load Limits.

Special VWA:

Subject to technical modifications!

Due to the adapter bar, it can be fool-proof connected to all VIP clevis components. The sealed body makes it more resistant to dirt. Do not bend the appliance! The installation of the adapter should be done in such a way that no bending occurs during use. Supply is subject to stock availability. This type will soon be replaced.

Chain	WLL t	Туре	А	В	С	Т	Smax	kg/pc.	Ref. No.
4	0.63	UW-PP-4	32	4.8	13	56	4.5	0.20	79 90 878
6	1.5	UW-PP-6	38	7.0	16	68	4.5	0.42	79 90 879
8	2.5	UW-PP-8	52	9.1	20	88	6.0	1.0	79 90 880
10	4.0	UW-PP-10	66	11.0	26	106	6.0	1.9	79 90 881
13	6.7	UW-PP-13	80	14.4	30	131	6.5	3.6	79 90 882
16	10.0	UW-PP-16	86	17.6	37	141	8.0	4.9	79 92 861
20	16.0	VWA-20	100	21	25	147	-	6.7	79 90 723
22	20.0	VWA-22	102	23	28	147	-	6.8	71 00 634

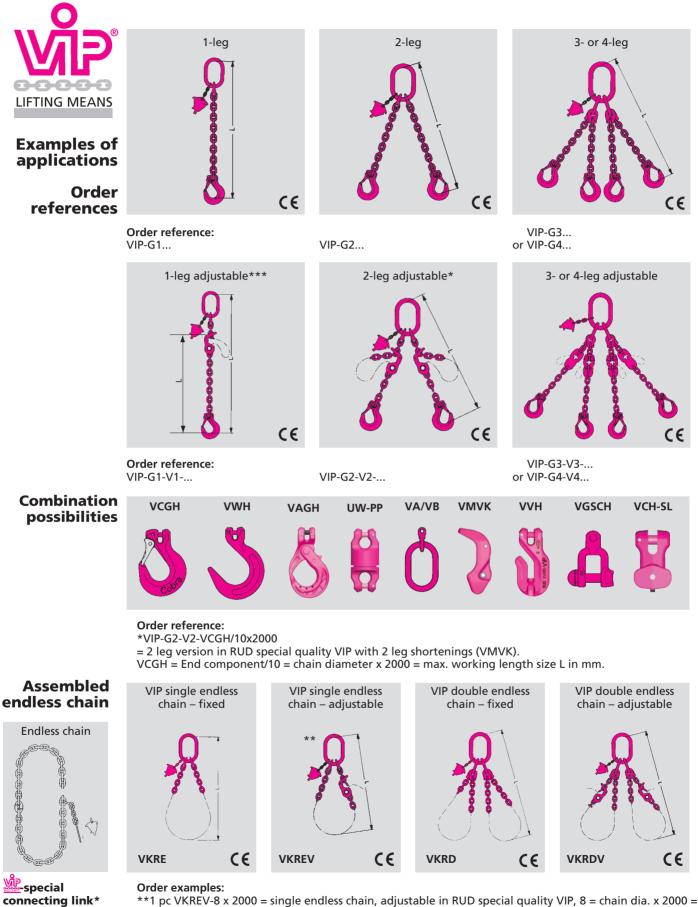
A single component for extrinsic connections to clevises, flanges etc.

Complete with a pre-assembled connecting bolt and tensioning sleeve.

Chain	\\/ +	Type	۸	D	C	Р	E	т	ka/nc	Pof No
Chain	VVLL L	туре	A	D	C		E	1	ky/pc.	Ref. NO.
6	1.5	VRG 6	17	30	37	16	8	28	0.07	71 00 469
8	2.5	VRG 8	23	40	50	22	10	37	0.2	71 00 470
10	4.0	VRG 10	28	50	60	26	13	46	0.3	71 00 471
13	6.7	VRG 13	36	64	75	32	17	58	0.7	71 00 472
16	10.0	VRG 16	45	75	92	40	20	74	1.1	71 00 473
20	16.0	VRG 20	58	92	118	52	28	94	3.1	71 03 384
22	20.0	VRG 22	62	102	124	52	32	94	3.5	71 01 611
	6 8 10 13 16 20	6 1.5 8 2.5 10 4.0 13 6.7 16 10.0 20 16.0	6 1.5 VRG 6 8 2.5 VRG 8 10 4.0 VRG 10 13 6.7 VRG 13 16 10.0 VRG 16 20 16.0 VRG 20	6 1.5 VRG 6 17 8 2.5 VRG 8 23 10 4.0 VRG 10 28 13 6.7 VRG 13 36 16 10.0 VRG 16 45 20 16.0 VRG 20 58	6 1.5 VRG 6 17 30 8 2.5 VRG 8 23 40 10 4.0 VRG 10 28 50 13 6.7 VRG 13 36 64 16 10.0 VRG 16 45 75 20 16.0 VRG 20 58 92	6 1.5 VRG 6 17 30 37 8 2.5 VRG 8 23 40 50 10 4.0 VRG 10 28 50 60 13 6.7 VRG 13 36 64 75 16 10.0 VRG 16 45 75 92 20 16.0 VRG 20 58 92 118	6 1.5 VRG 6 17 30 37 16 8 2.5 VRG 8 23 40 50 22 10 4.0 VRG 10 28 50 60 26 13 6.7 VRG 13 36 64 75 32 16 10.0 VRG 16 45 75 92 40 20 16.0 VRG 20 58 92 118 52	6 1.5 VRG 6 17 30 37 16 8 8 2.5 VRG 8 23 40 50 22 10 10 4.0 VRG 10 28 50 60 26 13 13 6.7 VRG 13 36 64 75 32 17 16 10.0 VRG 16 45 75 92 40 20 20 16.0 VRG 20 58 92 118 52 28	6 1.5 VRG 6 17 30 37 16 8 28 8 2.5 VRG 8 23 40 50 22 10 37 10 4.0 VRG 10 28 50 60 26 13 46 13 6.7 VRG 13 36 64 75 32 17 58 16 10.0 VRG 16 45 75 92 40 20 74 20 16.0 VRG 20 58 92 118 52 28 94	8 2.5 VRG 8 23 40 50 22 10 37 0.2 10 4.0 VRG 10 28 50 60 26 13 46 0.3 13 6.7 VRG 13 36 64 75 32 17 58 0.7 16 10.0 VRG 16 45 75 92 40 20 74 1.1 20 16.0 VRG 20 58 92 118 52 28 94 3.1

VIP-Connector VRG

13D e mini >MAXI< FF


Info

LIFTING MEANS

Universal Swivel -PP-UW-Patent

VIP-

*** in case of long adjustable assemblies it is recommended to mount the multi claw VMKV in the lower

part of the chain. Indicate Lv when ordering, e.g. VIP-G2-V2-VCGH/10x5000 Lv-2000.

for VIP-endless chain: Ø 20, 22 und 28 mm. On request.

max. working length size L in mm.

Mecano "in miniature" for small loads up to 1320 kg!

>mini<

Master link VAK 1/2

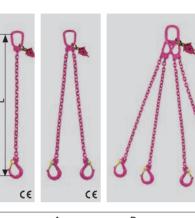
Master link VAK 3/4

Mini-lifter VML-2 – complete

»patent«

Mini-lifter VML-4

VIP-

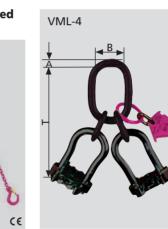

VIP-

VIP-

with

VIP-

VIP chain assembly, fixed length


Chain	WLL t	Туре	А	В	Т	Weight/pc. Ref. No.
4	0.63	VAK 1/2 – 4	9	30	55	0.1 79 84 445
4	1.32	VAK 3/4 – 4	10	35	106	0.3 79 84 447

VMH-4

VMKS

Weight/pc.

0.12

0.12

0.05

Ref. No.

79 84 439

79 85 243

79 90 215

D

-

10

-

Н

13

-

-

Chain WLLt Type A B T	Weight/pc. Ref. No.
	5 1
4 0.88/0.63 VML 2 – 4 10 30 66	0.26 79 84 478
4 1.32/0.95 VML 4 – 4 10 35 150	0.85 79 84 479

VEA-4

MW

18

-

_

A

30

_

В

-

14

_

Т

56

42

_

т

4

Туре

VMH – 4

VMKS-4

VEA – 4

VMH-4

***VIP-**End link VEA-4!

VIP-Minicoupling shackle VMKS

Info

Chain

4

4

4

WLL t

0.63

0.63

0.63

35

Secure lifting of heavy loads up to 126 t. From crane hook to a heavy load, always the right lifting mean!

RUD-ID-POINT®

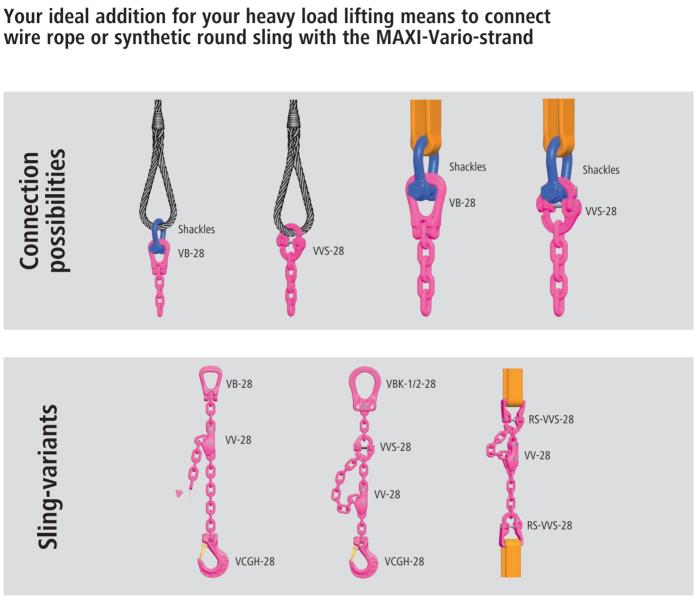
The **RUD-ID-Point**[®] (RFID chip) is embedded into the component. The RFID chip is branded with a unique identification number.

RUD-ID-READER

RUD-ID-NET®

The robust RUD reading devices capture the identification number of the **RUD-ID-Point**[®] and transfer it to the **RUD-ID-NET**[®] application (software) or alternatively to your PC applications (e.g. WordPad, MS Word, MS Excel, SAP) etc.

The resourceful **RUD-ID-NET**[®] application (software) will support your product administration and documentation.


1		the second s			1000
1.17					
	Revenue.				
	Terine .			 	
	P a ====	-		-	
	9 a		0000**	1.000	-
-			SECONDUC-	-	
	15 a		Caracter Jacob	-	-
	a		openantia-	-	-
	2 ·		Barrison	-	
	a	-	ataria,43	-	
	M a		100007		
	1 .		Parameters.		-
	10000 .				

Subject to technical modifications!

1 Do ><mark>mini</mark>< >MAXI< +) (-) 2-

VVS-28 with VC-SCH-6.0

Info

Unsymmetrical heavy load? Different strand lenghts?

possibilities

Sling-variants

End fittings

VCGH-28

VB-28

VVS-28

RS-VVS-28

Connection

Mecano

VAK 1/2-28: For single crane hooks (Size 40+50) and double crane hooks (Size 40+50) VBK 1/2-28: For single crane hooks (Size 12-32) and double crane hooks (Size 12-32) *

**

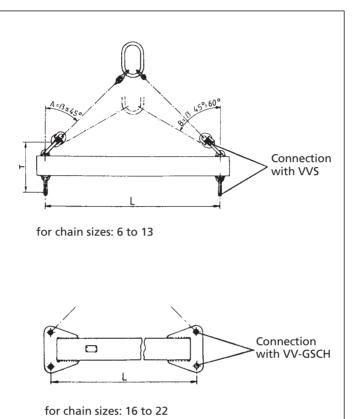
For details regarding MAXI lifting points please see the MAXI flyer

Nomination	WLL [t]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	G [mm]	T [mm]	Weight [kg/pc.]	Ref. No.
VAK-1/2-28	31.5/45/63	100	250	280	208	120	76	[11111]	360	64.3	7900642
VBK-1/2-28	31.5/45/63	60	190	265	208	120	55	-	322	35	8504022
VB-28	31.5	62	130	150	130	80	100	52	209	13.7	7900641
VCGH-28	31.5	150	101	69	88	00	90	295	209	26.4	7900641
VVS-28	31.5	69	228	58	47	67	81	- 295	189	10.6	7900638
VV-28	31.5	150	130	130		- 07			170	10.6	7901445
					-		-	-			
RS-VVS-28	31.5	69	163	100	47	33	-	-	245	20	7903511
VIP-DOMI	31.5	-	-	40	-	-	-	-	126	4.1	58917
VLE-28	31.5	650	172	138	120	-	-	-	478	44	7900772
VUW-28	31.5	148	-	-	-	-	-	-	183	27.3	7903435
VUW-GLD-28	31.5	153	-	-	46	110	169	-	416	32.1	7903436
Kombi VVS-28 and VC-SCH 6.0	31.5	-	-	-	-	-	-	-	309	16.5	-
VMK 28x84	31.5	28	37	-	-	-	-	-	84	18.6	7900670
VC-SCH 6.0	31.5	53	34	78	39	37	34	121	120	5.9	7984333
VIP-KZA	-	-	-	-	-	-	-	-	-	-	7989739
MAXI-Tester	-	-	-	-	-	-	-	-	-	-	7900709
ABA 31.5	31.5	108	64	320	130	50	204	-	154	18.3	7902175
VRBS-FIX 31.5	31.5	160	42	99	130	366	195	-	202	18.4	7999302
WPPH-KA-28	31.5	28	-	-	148	-	-	-	74	11	7903438
VWBS-KA-28	31.5	28	-	-	170	-	-	-	147	24	7903440
VWBS 40 t (50 t)	40	46	170	110	170	-	-	161	380	27.9	7903650
VWBG-KA-28	31.5	-	-	-	170	-	108	-	146	26.4	7903437
VWBG 31.5	31.5	46	130	90	170	-	108	159	338	29.9	7900097
VRBG 31.5	31.5	180	42		130	_		400	-	67.0	7985866

WLL of single and multi-leg chain slings at different angles of inclination and symmetrical load of the strands.

Subject to technical modifications!

- At unsymmetrical loads the WLL must be reduced by 50 %.
- *Choke hitch or endless chains: With bitts, bolts, resp. diameter of shackle pin > 3 x t (250 mm) the WLL
 - of a double strand can be assumed. With smaller diameters (loading at the edge) the WLL must be reduced
 - by 20 %.
- If double strand is required please specify


When using a basket hitch it must be guaranteed that loads cannot shift into dangerous positions or drop (BetrSichV, Attachment 1 acc. to § 7).

VIP-Spreader bar fixed VSRS

VIP Spreader bar fixed VSRS When ordering please indicate the effective length L of the spreader bar!

Spreader bars are also available with chain slings. When ordering, specify the type of master link and the required inclination angle β .

VIP spreader bars are non stock items and their production is subject to customer requirement. Thus bear in mind the respective delivery periods.

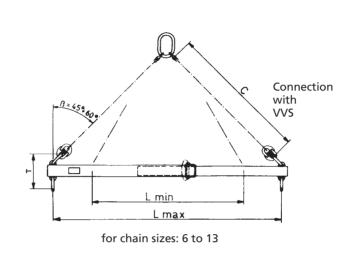
Surface: Effective length L **up to** 2500 mm: pink powder coated.

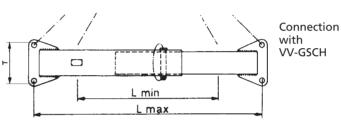
Effective length L **beyond** 2500 mm: yellow painted.

size	Туре	working length L	-		_ kg	Weight	
		working length L	I	0 – 45°	45 – 60°	kg/pc.	Ref. No.
6	VSRS-6	500 – 4000 mm	190	2100	1500		86 00 110
8	VSRS-8	500 – 5000 mm	240	3500	2500	th L	86 00 111
10	VSRS-10	500 – 5000 mm	320	5600	4000		86 00 112
13	VSRS-13	1000 – 5000 mm	350	9500	6700		86 00 113
16	VSRS-16	1000 – 5000 mm	250	14000	10000	hend king	86 00 114
20	VSRS-20	1000 – 5000 mm	285	22400	16000	_ dep _	86 00 115
22	VSRS-22	1000 – 5000 mm	290	28000	20000	>	86 00 116

VIP Spreader bar adjustable VSRV

When ordering please indicate working length L of the spreader bar!


Adjustable spreader bars are also available with chain slings. When ordering, specify the type of master link and the required inclination angle β .


VIP spreader bars are non stock items and their production is subject to customer requirement. Thus bear in mind the respective delivery periods.

Surface: Pink powder coated.

L_{min.} depends on L_{max.} and nominal size.

for chain sizes: 16 to 22

VIP-Spreader bar adjustable VSRV

Chain		Possible working		W	LL kg	Weight	
size	Туре	length L _{max.}	Т	≦β 45°	β 45 – 60°	kg/pc.	Ref. No.
6	VSRV-6	1500 – 4000 mm	200	2100	1500		86 00 120
8	VSRV-8	1500 – 4000 mm	250	3500	2500	th L	86 00 121
10	VSRV-10	1500 – 4000 mm	330	5600	4000		86 00 122
13	VSRV-13	1500 – 4000 mm	360	9500	6700	ding J lenç	86 00 123
16	VSRV-16	1500 – 4000 mm	250	14000	10000	hend	86 00 124
20	VSRV-20	1500 – 4000 mm	285	22400	16000	dep	86 00 125
22	VSRV-22	1500 – 4000 mm	290	28000	20000	- 3	86 00 126

Edge protecting device RSK

RUD-RSK System made out of heavy duty and extremely durable polyurethane for edges.

Flexible in all directions. Manually movable along the chain. Even load distribution due to a diagonal transversal crucifix. Max. 2 m can be supplied. Available in 1 m and 2 m lengths

Chain	Туре	А	В	Ref. No.
6	RSK – 6	27	27	56 033
8	RSK – 8	33	33	56 037
10	RSK – 10	38	38	55 810
13	RSK – 13	50	50	56 038
	*further (izos upop ros	nuest	

*further sizes upon request.

Info

The suitable range of modern and safe Lifting Points – for bolting

Thread		S		P-S (Vari erPoint-		PP-B (Va PowerPoi		PP-VIP (PowerPo	Vario) int-VIP		ICE-	LBG	SR L	.oad	Ring	g Su	per l	Rota	tion						V	LBG	Loa	d Ri	ng (\	Vario))				
M1 Impe (UNC special I on rec	50 erial .) an engt	d hs	<				5						EF	AT) 0N	•									C										STEEL
	Number of legs	Load direction	Type	PP-S 0.63 t	PP-S 1.5 t	PP-S 2.5 t	PP-S 4 t	PP-S 5 t	PP-S 8 t	ICE-LBG-SR 0.3t	ICE-LBG-SR 0.63t	ICE-LBG-SR 1t	ICE-LBG-SR 1.5t	ICE-LBG-SR 2.5t	ICE-LBG-SR 4t	ICE-LBG-SR 5t	ICE-LBG-SR 8t	ICE-LBG-SR 10t	ICE-LBG-SR 15t	ICE-LBG-SR 20t	VLBG 0.3 t	VLBG 0.63 t	VLBG 1 t	VLBG 1.5 t	VLBG 2.5 t	VLBG 4 t	VLBG 4 t	VLBG 5 t	VLBG 7 t Sond.	VLBG 8 t	VLBG 10 t	VLBG 15 t	VLBG 20 t	LBG(3) M16 RS 1t	LBG(3) M20 RS 2t
	Numbe	Load d	Thread size	M 12	M 16	M 20	M 24	M 30	M 36	M 8	M 10	M 12	M 16	M 20	M 24	M 30	M 36	M 42	M 42	M 48	M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30	M 36	M 36	M 42	M 42	M 48	M 16	M 20
¢ G	1	0°		0.6	1.5	2.5	4	6.7	10	0.3	0.63	1	1.5	2.5	4	5	8	10	15	20	0.3	0.6	1	1.5	2.5	4	4	5	7	8	10	15	20	1	2
, ↓ ↓ G	2	0°		1.2	3	5	8	13.4	20	0.6	1.26	2	3	5	8	10	16	20	30	40	0.6	1.2	2	3	5	8	8	10	14	16	20	30	40	2	4
G	1	90°		0.6	1.5	2.5	4	5	8	0.3	0.63	1	1.5	2.5	4	5	8	10	15	20	0.3	0.6	1	1.5	2.5	4	4	5	7	8	10	15	20	1	2
G G	2	90°		1.2	3	5	8	10	16	0.6	1.26	2	3	5	8	10	16	20	30	40	0.6	1.2	2	3	5	8	8	10	14	16	20	30	40	2	4
*	2	0- 45°		0.8	2.1	3.5	5.6	7.1	11.2	0.42	0.88	1.4	2.1	3.5	5.6	7	11.2	14	21	28	0.4	0.8	1.4	2.1	3.5	5.6	5.6	7	9.8	11.2	14	21	28	1.4	2.8
G	2	45- 60°		0.6	1.5	2.5	4	5	8	0.3	0.63	1	1.5	2.5	4	5	8	10	15	20	0.3	0.6	1	1.5	2.5	4	4	5	7	8	10	15	20	1	2
G	2	unsymmetrical		0.6	1.5	2.5	4	5	8	0.3	0.63	1	1.5	2.5	4	5	8	10	15	20	0.3	0.6	1	1.5	2.5	4	4	5	7	8	10	15	20	1	2
le te	3+4	0-		1.3	3.2	5.3	8.4	10.5	16.8	0.63	1.32	2.1	3.15	5.25	8.4	10.5	16.8	21	31.5	42	0.6	1.3	2.1	3.1	5.2	8.4	8.4	10.5	14.7	16.8	21	31.5	42	2.1	4.2
G	3+4	45- 60°		0.9	2.2	3.8	6	7.5	12	0.45	0.95	1.5	2.25	3.75	6	7.5	12	15	22.5	30	0.4	0.9	1.5	2.2	3.7	6	6	7.5	10.4	12	15	22.5	30	1.5	3
gr G	3+4	un sym metrical		0.6	1.5	2.5	4	5	8	0.3	0.63	1	1.5	2.5	4	5	8	10	15	20	0.3	0.6	1	1.5	2.5	4	4	5	7	8	10	15	20	1	2
		2	Thread size	M 12	M 16	M 20	M 24	M 30	M 36										M 42						M 20					M 36		M 42		M 16	

Maximum transport weight "G" in [tonnes] with different lifting methods

All parts are either 100 % crack detected or proof loaded accord. to EN 1677.

 All original bolts from RUD are 100 % crack detected.

- Safety factor 4:1 in any direction.
- The types VRS, VRM, INOX-STAR and VLBG have to be adjusted to the load direction.

Low installation height, high dynamic and static strength.

RUD features such as clamping spring (VLBS) for noise reduction and distance lugs for a perfect root pass weld increase the ease of use.

		The	sui	tabl	e ra	nge	of n	nod	ern	and	saf	e Li	fting	g Po	oints	— fo	or b	oltin	ıg											B RUD°
				Lo	WBG- ad Ri Vario	ng													L	VWBC oad Ri										USE USE
						D												<		5		>								
VWBG-V 0.3 t	VWBG-V 0.45 t	VWBG-V 0.6 t	VWBG-V 1.0 t	VWBG-V 1.3 t	VWBG-V 1.8 t	VWBG-V 2 t	VWBG-V 2 t	VWBG-V 3.5 t	VWBG-V 3.5 t	VWBG-V 5 t	VWBG 6 (7.5)	VWBG 8 (10)	VWBG 8 (10)	VWBG 12 (13)	VWBG 12 (13)	VWBG 12 (15)	VWBG 13 (16)	VWBG 13 (16)	VWBG 14 (20)	VWBG 16 (22)	VWBG 16 (22)	VWBG 16 (25)	VWBG 16 (25)	VWBG 31.5 (40)	VWBG 31.5 (40)	VWBG 35 (48)	VWBG 35 (48)	VWBG 40 (50)	VWBG 40 (50)	R
M 8	M 10	M 12	M 14	M 16	M 18	M 20	M 22	M 24	M 27	M 30	30 33 36 36-39 42 42-45 45 48 48-52 52 56 56-62 64 64-76 72 72-76 80 80-85 90 90-150															δ				
0.6	0.9	1.2	2	2.6	3.6	4	4	7	7	10	10 15 15 15 17 17 18 18 18 25 28 28 28 28 50 50 50 50 50 50 50 50															Ŏ				
1.2	1.8	2.4	4	5.2	7.2	8	8	14	14	20	30	30	30	34	34	36	36	36	50	56	56	56	56	100	100	100	100	100	100	
0.3 (0.4)	0.45 (0.6)	0.6 (0.7)	1 (1.25)	1.3 (1.5)	1.8 (2)	2 (2.5)	2 (2.5)	3.5 (4)	3.5 (4)	5 (6)	6 (7.5)	8 (10)	8 (10)	12 (13)	12 (13)	12 (15)	13 (16)	13 (16)	14 (20)	16 (22)	16 (22)	16 (25)	16 (25)	31.5 (40)	31.5 (40)	35 (48)	35 (48)	40 (50)	40 (50)	4
0.6 (0.8)	0.9 (1.2)	1.2 (1.5)	2 (2.5)	2.6 (3)	3.6 (4)	4 (5)	4 (5)	7 (8)	7 (8)	10 (12)	12 (15)	16 (20)	16 (20)	24 (26)	24 (26)	24 (30)	26 (32)	26 (32)	28 (40)	32 (44)	32 (44)	32 (50)	32 (50)	63 (80)	63 (80)	70 (96)	70 (96)	80 (100)	80 (100)	A
0.4 (0.56)	0.6 (0.84)	0.8 (1.05)	1.4 (1.75)	1.8 (2.1)	2.5 (2.8)	2.8 (3.5)	2.8 (3.5)	4.9 (5.6)	4.9 (5.6)	7 (8.4)	8.4 (10.5)	11.2 (14)	11.2 (14)	16.8 (18.2)	16.8 (18.2)	16.8 (21)		18.2 (22.4)	19.6 (28)	22.4 (30.8)	22.4 (30.8)	22.4 (35)	22.4 (35)	44.1 (56)	44.1 (56)	49 (67.2)	49 (67.2)	56 (70)	56 (70)	
0.3 (0.4)	0.45 (0.6)	0.6 (0.7)	1 (1.25)	1.3 (1.5)	1.8 (2)	2 (2.5)	2 (2.5)	3.5 (4)	3.5 (4)	5 (6)	6 (7.5)	8 (10)	8 (10)	12 (13)	12 (13)	12 (15)	13 (16)	13 (16)	14 (20)	16 (22)	16 (22)	16 (25)	16 (25)	31.5 (40)	31.5 (40)	35 (48)	35 (48)	40 (50)	40 (50)	
0.3 (0.4)	0.4 (0.6)	0.6 (0.7)	1 (1.25)	1.3 (1.5)	1.8 (2)	2 (2.5)	2 (2.5)	3.5 (4)	3.5 (4)	5 (6)	6 (7.5)	8 (10)	8 (10)	12 (13)	12 (13)	12 (15)	13 (16)	13 (16)	14 (20)	16 (22)	16 (22)	16 (25)	16 (25)	31.5 (40)	31.5 (40)	35 (48)	35 (48)	40 (50)	40 (50)	
0.6 (0.84)	0.9 (1.26)					4.2 (5.25)																					73.5 (100)		84 (105)	⊤ ∍mini«
0.4 (0.6)	0.6 (0.9)		1.5 (1.87)	1.9 (2.25)	2.7 (3)	3 (3.75)	3 (3.75)	5.2 (6)	5.2 (6)	7.5 (9)	9 (11.2)	12 (15)	12 (15)	18 (19.5)	18 (19.5)		19.5 (24)	19.5 (24)	21 (30)	24 (33)	24 (33)	24 (37.5)	24 (37.5)		47.25 (60)	52.5 (72)	52.5 (72)	60 (75)	60 (75)	×IXAN
0.3 (0.4)	0.4 (0.6)	0.6 (0.7)	1 (1.25)	1.3 (1.5)	1.8 (2)	2 (2.5)	2 (2.5)	3.5 (4)	3.5 (4)	5 (6)	6 (7.5)	8 (10)	8 (10)	12 (13)	12 (13)	12 (15)	13 (16)	13 (16)	14 (20)	16 (22)	16 (22)	16 (25)	16 (25)	31.5 (40)	31.5 (40)	35 (48)	35 (48)	40 (50)	40 (50)	
M 8	M 10	M 12	M 14	M 16	M 18	M 20	M 22	M 24	M 27	M 30	M 33	M 36	M 36-39	M 42	M 42-45	M 45	M 48	M 48-52	M 52	M 56	M 56-60	M 64	M 64-76	M 72	M 72-76	M 80	M 80-85	M 90	M 90-150	Y

Maximum transport weight "G" in [tonnes] with different lifting methods

RUD Lifting Point CD-ROM makes it easy to select the right Lifting Point.

■ RUD Lifting Points conform fully dynamic applications of 20000 load cycles, with 50 % overload.

■ In case of higher dynamic application please ask manufacturer.

The suitable range of modern and safe Lifting Points – for bolting

Thread M M 1	6-			(poir Var yeb		RS				arpo VRN yeni	1				INO	X-ST	ſAR				Hig	h-te			RM ebo		eye	nut					L	VR oad		g		
Impe (UNC special on ree	erial) and lengt	d hs			and the second s	1111 No. 1	5										LETANI																all.					e	
	Number of legs	Load direction	Type	VRS M6 / VRM M6 *	VRS M8 / VRM M8 *	VRS M10 / VRM M10 *	VRS M12 / VRM M12 *	VRS M16 / VRM M16 *	VRS M20 / VRM M20 *	VRS M24 / VRM M24 *	VRS M30 / VRM M30 *	VRS M36	VRS M42	VRS M48	INOX M12	INOX M16	INOX M20	INOX M24	INOX M30	RS M6 / RM M6	RS M8 / RM M8	RS M10 / RM M10	RS M12 / RM M12	RS M14 / RM M14	RS M16 / RM M16	RS M20 / RM M20	RS M24 / RM M24	RS M30 / RM M30	RS M36 / RM M36	RS M42 / RM M42	RS M48 / RM M48	RBG 3 t	VRBG 10 t	VRBG 16 t	VRBG 31.5 t	VRBG 50 t	WBPG 80 t	WBPG 100 t	WBPG 200 t
	Numbe	Load di	Thread size	M 6	M 8	M 10	M 12	M 16	M 20	M 24	M 30	M 36	M 42	M 48	M 12	M 16	M 20	M 24	M 30	M 6	M 8	M 10	M 12	M 14	M 16	M 20	M 24	M 30	M 36	M 42		2x M 16	4x M 20	4x M 30	6x M 30	8x M 36	6x M 48	М	
¢ G	1	0°		0.5	1	1	2	4	6	8	12	16	24	32	1.2	2.4	3.6	5.2	-	0.4	0.8	1	1.6	3	4	6	8	12	16	24	32	3	10	16	31.5	50	85	100	200
φ G	2	0°		1	2	2	4	8	12	16	24	32	48	64	2.4	4.8	7.2	10.4	-	0.8	1.6	2	3.2	6	8	12	16	24	32	48	64	6	20	32	63	100	170	200	400
G	1	90°		0.1	0.3	0.4	0.7	1.5	2.3	3.2	4.5	7	9	12	0.5	1	2	2.5	-													3	10	16	31.5	50	85	100	200
G G	2	90°		0.2	0.6	0.8	1.5	3	4.6	6.4	9	14	18	24	1	2	4	5	-							-01	ne	nd				6	20	32	63	100	170	200	400
刺头	2	0- 45°		0.14	0.42	0.56	1	2.1	3.2	4.5	6.3	9.8	12.6	16.8	0.7	1.4	2.8	3.5	-				W	1	t0	use	ain	tl«				4.2	14	22.4	45	70	119	140	280
G	2	45- 60°		0.1	0.3	0.4	0.7	1.5	2.3	3.2	4.5	7	9	12	0.5	1	2	2.5	-		,	wh	»VI ich	RS- ca	Sta In I	arp pe i	adj ctiv	ุ่นร วท	ted			3	10	16	31.5	50	85	100	200
G	2	unsymmetrical		0.1	0.3	0.4	0.7	1.5	2.3	3.2	4.5	7	9	12	0.5	1.0	2.0	2.5	-				ich t0			oull						3	10	16	31.5	50	85	100	200
Hert.	3+4	0-		0.21	0.63	0.8	1.5	3.1	4.8	6.7	9.4	14.7	18.9	25	1	2.1	4.2	5.3	-													6.3	21	33.6	67	105	178	210	420
G	3+4	45- 60°		0.15	0.45	0.6	1.1	2.2	3.4	4.8	6.7	10.5	13.5	18	0.7	1.5	3	3.7	_													4.5	15	24	47.5	75	127	150	300
₽ [₽] G	3+4	unsymmetrical		0.1	0.3	0.4	0.7	1.5	2.3	3.2	4.5	7	9	12	0.5	1	2	2.5	-													3	10	16	31.5	50	85	100	200
		3	Thread size	M 6	M 8	M 10	M 12	M 16				M 36				M 16							M 12									М	М	М	М	М	6x M 48	М	М

Maximum transport weight "G" in [tonnes] with different lifting methods

* The WLL values of the VRM are only valid with threaded bolts of quality 10.9.

The s	uita	ble	e pi	od	uct	lin	e o	of m	od	ern	an	id s	afe	e lif	ting	g –	an	d la	ash	ing	рс	oint	s –	we	elda	ble	2					
			WP	P-sei	Powe ries / tatio	WPF	PH-se	ries			Loa (LPW	d rin	VLBS g foi aN f	s welo or las	ling hing)			(LRI	BS-FI	S-FIX X in shing	daN		Ey for (LF	RBK-F re Pla corn 90° RBK-F	te ers IX	(L- <i>A</i>	ABA i		BA N for	lash	ing)
				al	l var	> iatio	ins and the second			9			aca				T T		C	ſ	3		C	i for	n daN lashi	N ng)		the state	S		No.	
	Number of legs	rection	WPP / WPPH 0.63	WPP / WPPH 1.5 t	WPP / WPPH 2.5 t	WPP / WPPH 4 t	WPP / WPPH 5 t	WPP / WPPH 8 t	VLBS 1.5 t	VLBS 2.5 t	VLBS 4 t	VLBS 6.7 t	VLBS 10 t	VLBS 16 t	LBS(1) RS 0.5 t	LBS(3) RS 1 t	LBS(5) RS 2 t	VRBS-FIX 4 t	VRBS-FIX 6.7 t	VRBS-FIX 10 t	VRBS-FIX 16 t	VRBS-FIX 31.5 t	VRBS-FIX 50 t	VRBK-FIX 4 t	VRBK-FIX 6.7t	VRBK-FIX 10t	ABA 1.6 t	ABA 3.2 t	ABA 5 t	ABA 10 t	ABA 20 t	ABA 31.5 t
	Numbe	Load direction							3000 daN	5000 daN	8000 daN	13400 daN	20000 daN					8000 daN	13400 daN	20000 daN				8000 daN	13400 daN	20000 daN	3200 daN	6400 daN	10000 daN	20000 daN		
¢ G	1	0°	0.6	1.5	2.5	4	6.7	10	1.5	2.5	4	6.7	10	16	0.5	1	2	4	6.7	10	16	31.5	50	4	6.7	10	1.6	3.2	5	10	20	31.5
¢ ¢ G	2	0°	1.2	3	5	8	13.4	20	3	5	8	13.4	20	32	1	2	4	8	13.4	20	32	63	100	8	13.4	20	3.2	6.4	10	20	40	63
G	1	90°	0.6	1.5	2.5	4	5	8	1.5	2.5	4	6.7	10	16	0.5	1	2	4	6.7	10	16	31.5	50	4	6.7	10	1.6	3.2	5	10	20	31.5
G o	2	90°	1.2	3	5	8	10	16	3	5	8	13.4	20	32	1	2	4	8	13.4	20	32	63	100	8	13.4	20	3.2	6.4	10	20	40	63
₩.	2	0- 45°	0.8	2.1	3.5	5.6	7.1	11.2	2.1	3.5	5.6	9.38	14	22.4	0.7	1.4	2.8	5.6	9.38	14	22.4	45	70	5.6	9.38	14	2.2	4.5	7.1	14.1	28	45
Ğ	2	45- 60°	0.6	1.5	2.5	4	5	8	1.5	2.5	4	6.7	10	16	0.5	1	2	4	6.7	10	16	31.5	50	4	6.7	10	1.6	3.2	5	10	20	31.5
G	2	unsymmetrical	0.6	1.5	2.5	4	5	8	1.5	2.5	4	6.7	10	16	0.5	1	2	4	6.7	10	16	31.5	50	4	6.7	10	1.6	3.2	5	10	20	31.5
10 to	3+4	0- 45°	1.3	3.2	5.3	8.4	10.5	16.8	3.15	5.25	8.4	14.1	21	33.6	1.05	2.1	4.2	8.4	14.1	21	33.6	66.2	105	8.4	14.1	21	3.4	6.8	10.6	21.2	42	67
G	3+4	45- 60°	0.9	2.2	3.8	6	7.5	12	2.25	3.75	6	10.1	15	24	0.75	1.5	3	6	10.1	15	24	47.5	75	6	10.1	15	2.4	4.8	7.5	15	30	47.5
G	3+4	unsymmetrical	0.6	1.5	2.5	4	5	8	1.5	2.5	4	6.7	10	16	0.5	1	2	4	6.7	10	16	31.5	50	4	6.7	10	1.6	3.2	5	10	20	31.5
Weld								HY 3+10						HV 25+6					HY 5	HY 6		HY 12			НҮ 3+5		⊾ 4	⊾ 6	⊾ 7	∆ 8		⊾ 15

Maximum transport weight "G" in [tonnes] with different lifting methods

Info

RUD Lashing chain ICE-CURT with highest LC (lashing capacity)

The proven, technical advantages of the VIP-program have been retained and further improved. Tensioning, connecting and shortening element have been improved considerably in weight and functionality.

ICE – in ICE-Pink (traffic purple) powder coated – means significant weight saving for the user. The standard equivalent Grade 80 commercial lashing chains are on average 60 % heavier.

This improved ergonomic design, enables faster fitting and heightened safety.

It is possible to use one diameter thinner than Grade 80 <16 mm \emptyset .

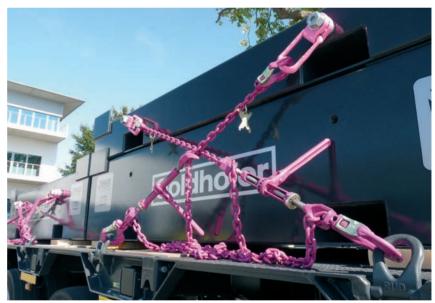
Up to 60 % higher Lashing Capacity (LC) than Grade 80 -also up to -60° C even in Arctic applications.

All values (conditions) of EN 12195-3 are fulfilled and the essential requirements are easily exceeded. All for the health and safety of the user!

ICE-CURT

Ratchet tensioner version with an integrated fast shortener, which is assembled captive in the chain strand. As an alternative there is a clevis type available also.

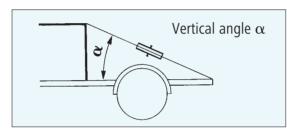
Patented:

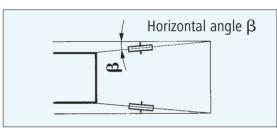

"Secured against release by a magnet blocking clutch which can be secured with a lock. Theft protection of lashing chain and transporting goods."

Thread tube now in an open and innovative form – robust, light in weight and due to the trapezoid thread easy to clean, check and lubricate.

Made in Germany.

All pieces drop forged, quenched and tempered and 100 % crack inspected.


ICE sets new benchmarks in lashing chain technology!



Up to 60 % more LC-Lashing Capacity than Grade 80 – with decisive handling benefits!

Which lashing chain for which load?

					Diagor	nal las	hing						
Zurrkette	LC	Max. Io	oad weig	ht [t] (ho	orizontal a	ngle β: 2	20°-45°;	2 lashing	g chains p	oer direct	ion)		
	[daN]	Vertical	angle $lpha$: 0°-30°				Vertica	l angle o	x: 30°-60	0		
		µ=0.1	µ=0.2	μ=0.3	µ=0.4	µ=0.5	µ=0.6	µ=0.1	µ=0.2	μ=0.3	µ=0.4	µ=0.5	µ=0.6
ICE-VSK 6	3600	6.2	8.4	10.4	13.0	17.4	26.2	4.5	6.3	9.0	12.8	19.2	32.0
ICE-VSK 8	6000	10.5	14.0	17.4	21.8	29.1	43.9	7.6	10.7	15.0	21.4	32.0	53.4
ICE-VSK 10	10000	17.5	23.4	29.0	36.4	48.6	73.1	12.8	17.9	25.0	35.6	53.4	89.0
ICE-VSK 13	16000	28.0	37.5	46.4	58.2	77.8	117.0	20.5	28.6	40.0	57.1	85.5	142.4
ICE-VSK 16	20000	43.7	58.6	72.6	91.0	121.6	182.8	32.0	44.7	62.5	89.1	133.6	222.5

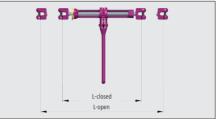
				F	rictio	nal las	hing						
RUD-Zurrkette	STF [daN]				lashing = factor f		X load	weight [t])				
		Vertical	angle α :	60°-90°				Vertica	l angle α	: 30°-60°			
		µ=0.1	µ=0.2	µ=0.3	µ=0.4	µ=0.5	µ=0.6	µ=0.1	μ=0.2	µ=0.3	µ=0.4	µ=0.5	µ=0.6
ICE-VSK 6	1500	3.6 x	1.6 x	0.9 x	0.6 x	0.4 x	0.2 x	6.3 x	2.7 x	1.5 x	0.9 x	0.6 x	0.3 x
ICE-VSK 8	2800	2.0 x	0.9 x	0.5 x	0.3 x	0.2 x	0.1 x	3.4 x	1.5 x	0.8 x	0.5 x	0.3 x	0.2 x
ICE-VSK 10	2800	2.0 x	0.9 x	0.5 x	0.3 x	0.2 x	0.1 x	3.4 x	1.5 x	0.8 x	0.5 x	0.3 x	0.2 x
ICE-VSK 13	2800	2.0 x	0.9 x	0.5 x	0.3 x	0.2 x	0.1 x	3.4 x	1.5 x	0.8 x	0.5 x	0.3 x	0.2 x

Values of both tables refer to: stable load. road transport. no combination with other lashing or securing methods!

Slide-	coefficient of	f friction μ	
Materials	dry	wet	greasy
Wood/wood	0.20-0.50	0.20-0.25	0.05-0.15
Metal/wood	0.20-0.50	0.20-0.25	0.02-0.10
Metal/metal	0.10-0.25	0.10-0.20	0.01-0.10

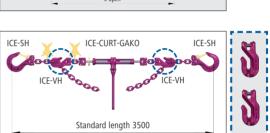
If there is a clear deviation from the indicated lashing angles, then it is necessary to add some safety measures (e.g. larger chain diameter, and/or – **friction increasing elements**).

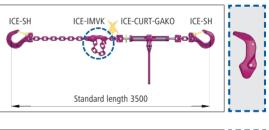
Subject to technical modifications!

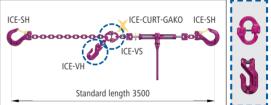

Download of the essay "Optimal load securing" under: **WWW_rud_com**

ICE-Lashing chains with ICE-CURT-Ratched spindle tensioner (vertical lashing and direct lashing)*

Ratch	net tensioner						
Chain	Туре	Permissible	Obtainable	Hub	L-open	L-closed	Ref. No.
dia.	ratchet tensioner	LC	pre-tension	[mm]	[mm]	[mm]	Ratchet
[mm]			force				tensioner
6	ICE-CURT-6-GAKO	3600	1500	140	400	260	7903439
8	ICE-CURT-8-GAKO	6000	2800	170	520	350	7901125
10	ICE-CURT-10-GAKO	10000	2800	170	532	362	7901126
13	ICE-CURT-13-GAKO	16000	2800	300	830	530	7902624
16	ICE-CURT-16-GAKO	25000	-	350	962	612	7902625

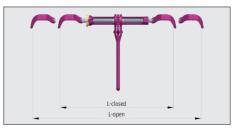



Chain dia. mm	Type lashing chain ICE-VSK-CURT-IVH	Permissible LC	Obtainable pre-tension force	L-min [mm]	Weight kgs (chain + ratchet tensioner)	Ref. No. Lashing chain
6	ICE-VSK-6-CURT-IVH	3600	1500	780	4.8 + 2.2	7903443
8	ICE-VSK-8-CURT-IVH	6000	2800	1040	8.0 + 5.2	7901129
10	ICE-VSK-10-CURT-IVH	10000	2800	1210	13.0 + 7.1	7901130
13	ICE-VSK-13-CURT-IVH	16000	2800	1600	21,9 + 13.6	7902626
16	ICE-VSK-16-CURT-IVH	25000	-	1910	34.5 + 24.3	7902627
Toncionor	moveshie within the chair	strand				


Tensioner moveable within the chain strand

Chain dia. mm	Type lashing chain ICE-VSK-CURT-IMVK	Permissible LC	Obtainable pre-tension force	L-min [mm]	Weight kgs (chain + ratchet tensioner)	Ref. No. Lashing chain
6	ICE-VSK-6-CURT-IMVK	3600	1500	770	6.3	7904614
8	ICE-VSK-8-CURT-IMVK	6000	2800	1010	11.7	7904615
10	ICE-VSK-10-CURT-IMVK	10000	2800	1170	17.0	7904616
13	ICE-VSK-13-CURT-IMVK	16000	2800	1540	28.6	7904617
16	ICE-VSK-16-CURT-IMVK	25000	-	1840	46.0	7904618

Chain dia. mm	Type lashing chain ICE-VSK-CURT-IVS	Permissible LC	Obtainable pre-tension force	L-min [mm]	Weight kgs (chain + ratchet tensioner)	Ref. No. Lashing chain
6	ICE-VSK-6-CURT-IVS	3600	1500	680	6.4	7904602
8	ICE-VSK-8-CURT-IVS	6000	2800	870	11.9	7904603
10	ICE-VSK-10-CURT-IVS	10000	2800	1000	17.7	7904604
13	ICE-VSK-13-CURT-IVS	16000	2800	1330	29.9	7904605
16	ICE-VSK-16-CURT-IVS	25000	-	1590	48.8	7904606





Ratch	Ratchet tensioner								
Chain	Туре	Permissible	Obtainable	Hub	L-open	L-closed	d Ref. No.		
dia.	ratchet tensioner	LC	pre-tension	[mm]	[mm]	[mm]	Ratchet		
[mm]			force				tensioner		
6	ICE-CURT-6-SL	3600	1500	140	470	330	7903441		
8	ICE-CURT-8-SL	6000	2800	170	623	453	7999435		
10	ICE-CURT-10-SL	10000	2800	170	671	501	7999436		

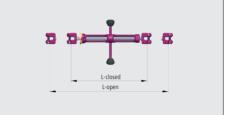
Chain dia. mm	Type lashing chain ICE-VSK-CURT-SL	Permissible LC	Obtainable pre-tension force	L-min [mm]	Weight kgs (chain + ratchet tensioner)	Ref. No. Lashing chain
6	ICE-VSK-6-CURT-SL	3600	1500	640	6.5	7903444
8	ICE-VSK-8-CURT-SL	6000	2800	817	12.6	7900026
10	ICE-VSK-10-CURT-SL	10000	2800	935	18.1	7900027

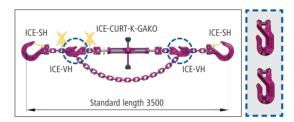
Captive tensioner moveable within the chain strand

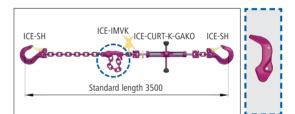
* The shown types are corresponding to lashing chains for the securing of loads.

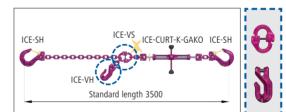
ICE-Lashing chains with ICE-CURT-K – Bar spindle tensioner (direct lashing only)**

Tensioner with locking handle

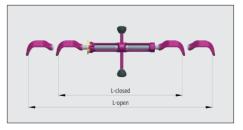

Chain	Туре	Permissib	le Obtainable	Hub	L-open	L-closed	Ref. No.
dia.	Bar spindle	LC	pre-tension	[mm]	[mm]	[mm]	Tensioner with
[mm]	tensioner		force				locking handle
6	ICE-CURT-K-6-GAKO	3600	direct lashing onl	ly 140	400	260	7904448
8	ICE-CURT-K-8-GAKO	6000	direct lashing onl	y 170	520	350	7904449
10	ICE-CURT-K-10-GAKC	0 10000	direct lashing onl	ly 170	532	362	7904450
13	ICE-CURT-K-13-GAKO	16000	direct lashing onl	y 300	830	530	7904451
16	ICE-CURT-K-16-GAK	25000	direct lashing on	y 350	962	612	7904452

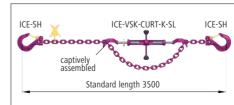

Chain	Туре	Permissibl	e Obtainable		Weight kgs	Ref. No.
dia.	lashing chain	LC	pre-tension	L-min	(chain + Bar	Lashing
mm	ICE-VSK-CURT-IVH		force	[mm]	spindle tensioner)	chain
6	ICE-VSK-6-CURT-K-IVH	3600	direct lashing or	nly 780	4.8 + 2.5	7904493
8	ICE-VSK-8-CURT-K-IVH	6000	direct lashing or	nly 1040	8.0 + 4.5	7904494
10	ICE-VSK-10-CURT-K-IVH	10000	direct lashing or	nly 1210	13.0 + 6.4	7904495
13	ICE-VSK-13-CURT-K-IVH	16000	direct lashing or	nly 1600	21.9 + 12.6	7904496
16	ICE-VSK-16-CURT-K-IVH	1 25000	direct lashing or	nly 1910	34.5 + 23.2	7904497
-						


Tensioner moveable within the chain strand


	Chain	Туре	Permissib	le Obtainable		Weight kgs	Ref. No.
	dia.	lashing chain	LC	pre-tension	L-min	(chain + Bar	Lashing
	mm	ICE-VSK-CURT-IMV	К	force	[mm]	spindle tensioner)	chain
_	6	ICE-VSK-6-CURT-K-IM	VK 3600	direct lashing only	y 770	6.6	7904608
	8	ICE-VSK-8-CURT-K-IM	VK 6000	direct lashing only	y 1010	11.0	7904610
_	10	ICE-VSK-10-CURT-K-IN	1VK10000	direct lashing only	y 1170	16.3	7904611
	13	ICE-VSK-13-CURT-K-IN	1VK16000	direct lashing only	y 1540	27.6	7904612
	16	ICE-VSK-16-CURT-K-IN	1VK25000	direct lashing only	v 1840	44.9	7904613

Chain	11	ermissib	le Obtainable		Weight kgs	Ref. No.
dia.	lashing chain	LC	pre-tension	L-min	(chain + Bar	Lashing
mm	ICE-VSK-CURT-IVS		force	[mm]	spindle tensioner)	chain
6	ICE-VSK-6-CURT-K-IVS	3600	direct lashing only	680	6.7	7904596
8	ICE-VSK-8-CURT-K-IVS	6000	direct lashing only	870	11.2	7904598
10	ICE-VSK-10-CURT-K-IVS	10000	direct lashing only	1000	17.0	7904599
13	ICE-VSK-13-CURT-K-IVS	16000	direct lashing only	1330	28.9	7904600
16	ICE-VSK-16-CURT-K-IVS	25000	direct lashing only	1590	47.7	7904601

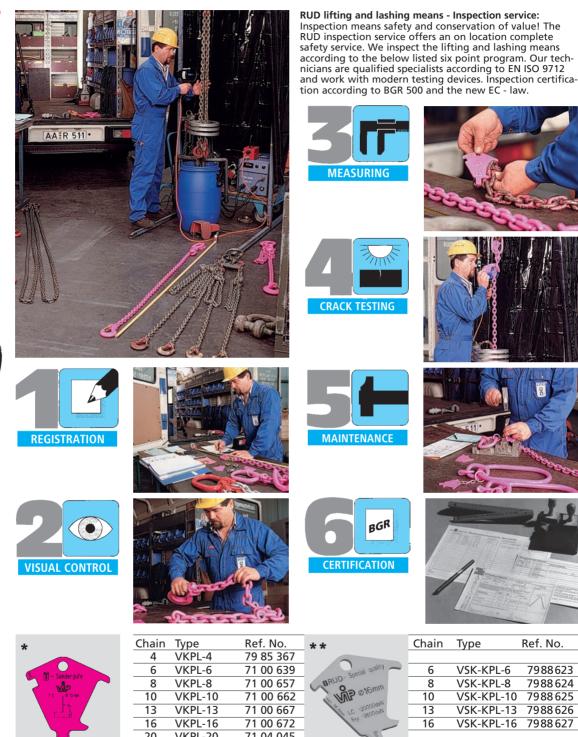



Tensi	Tensioner with locking handle								
Chain	Туре	Permissible	e Obtainable	Hub	L-open	L-closed	Ref. No.		
dia.	tensioner with	LC	pre-tension	[mm]	[mm]	[mm]	(chain + Bar		
[mm]	locking handle		force				spindle tensioner)		
6	ICE-CURT-K-6-SL	3600 0	lirect lashing on	ly 140	470	330	7904453		
8	ICE-CURT-K-8-SL	6000 C	lirect lashing on	ly 170	623	453	7994454		
10	ICE-CURT-K-10-SL	10000 (lirect lashing on	ly 170	671	501	7994455		

Chain dia. mm	Type lashing chain ICE-VSK-CURT-SL	Permissibl LC	e Obtainable pre-tension force	L-min [mm]	Weight kgs (chain + Bar spindle tensioner)	Ref. No. Lashing chain
6	ICE-VSK-6-CURT-K-SI	. 3600	direct lashing only	640	6.8	7904498
8	ICE-VSK-8-CURT-K-SL	6000	direct lashing only	817	11.7	7904499
10	ICE-VSK-10-CURT-K-S	L 10000	direct lashing only	935	17.3	7904500

Captive tensioner moveable within the chain strand

Subject to technical modifications!


**The shown types are corresponding to lashing chains for the securing of loads. For the usage of Bar spindle tensioners for lifting purposes see page 19.

Chain Inspection Service - prioritising security! -

VIP-ID tag incl. Testing guide *for VIPlifting/ **lashing chains

	TODE	
28	Maxi gauge	79 00 709
22	VKPL-22	71 01 832
20	VKPL-20	71 04 045
16	VKPL-16	71 00 672
13	VKPL-13	71 00 667
10	VKFL-IU	71 00 002

Testing wear of nominal dia.

Testing for elongation caused by wear of nominal diameter.

Testing for pitch elongation caused by overload.

Subject to technical modifications!

■ At regular intervals (maximum: one year) chain assemblies must be inspected by a competent person. Depending on the application circumstances, inspection might be necessary with in a time interval of less than one year. After a max. period of three years, chains must under go special inspection for the detection of cracks. After the occurence of a special incident, which could affect the WLL, chains should also be inspected by a compe-

■ Visual examination: This reveals any exterior defects for example deformed or twisted chain links or chain links with notches. Examine the components as to the correct fitting, completeness and efficiency of the safety devices.

- Examination of wear and elongation:
- 1. Examine wear of diameter.
- 2. Examine the plastic elongation caused by overload, more than 5 % based on the pitch 3d. Dm = $d1/2 + d2/2 \ge 0.9 d$.
- 3. Determine the pitch elongation caused by wear of the diameter. This can be easily carried out using the VIP testing gauge (refer to page 10 and 50).

■ Accessories: When the opening of the hook is deformed by more than 10 % or worn out by more than 5 %, it must be replaced. The same applies if the hook has got deep notches. For wear marks dimensions F refer to VCGH on pages 18 and 19. The same applies as for the lateral bending of the hook.

Permissible max. wear of the $\,$ VG – bolt diameter \leq 10 %.

When replacing components, always use new connecting bolts and tensioning sleeves.

Documentation in a chain register:

The entries in the chain register card give us information about the continuous inspection measures under taken by the user in the course of using the lifting and lashing chains. For the user, this can additionaly be used as evidence to be presented to the respective authorities to prove compliance with accident prevention measures as required by the EC-machinery directives.

will support your product administration and documentation (see pages 8 and 9).

Only RUD original spare parts must be used!

VIP-chains and components must be kept away from aggressive chemicals and acids. Surface treatment can only be undertaken by the manufacturer. Pay attention to the influence of temperatures (refer to the table on pages 4 and 7).

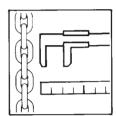
tent person. In the case of VIP chains and compo-

detection is insufficient. After the magnetic crack detection, probable cracks will be visible despite

the pink powder coating. Use the crack detection

fluid "Ferroflux".

 $d_{m} = \frac{d_{1} + d_{2}}{2} \ge 0.9 d$


nents, proof loading instead of magnetic crack

Please strictly adhere to the following regulations and specifications: BetrSichV – BGR 500, EN 818, EN 1677 and the RUD user instructions.

We are not liable for damages incurred as a result of ignoring the above regulations and specifications.

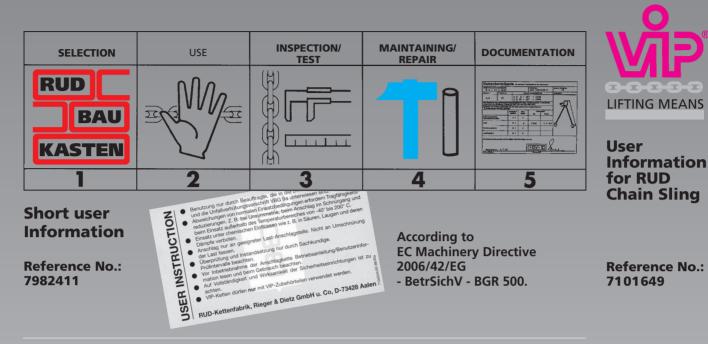
Regular Maintenance and Testing

USER-INFORMATION on www.rud.com

This is a special service for design engineers and the user. This application has been expanded with all innovations of the ICE- VIP- and Lifting & Lashing Point collection. The original features such as the selection of Lifting & Lashing Points, calculation of the Tie-Down solutions and Chain Slings have been improved and updated. The relevant tensioning elements and shortening components for the calculation of the different chain slings have been added and can now be taken into account. Additionally, to all the usual drawings we also provide the 3D-drawings, user instructions and declaration of conformity.

use

ฬ่∍


+point

25

О Ј Д

Bo

MAXI

Identification, inspection and documentation made easy!

Reference No.: 7102334

VIP WLL Poster

Size 420 x 625 mm Special Grade and Grade 80.

Storage of lifting and lashing system components.

Hang the components appropriately in a frame.

Left – <u>Ideal</u> Right – incorrectly used

Info

RUD-	0	ual	it،		in	P			
	Y		I G)						
	Grad	de 80,	Gra	de	100		P) ar	1	
1072 BILLE									
		»in m							
MAC GERT	Accor	ding to	inclin	atio	n ang	le at	symn	16	
RUD quality grades			1-leg	2-leg		3	-4 leg		
80 100 120	RUD System		\bigcap	\bigcap			\bigcap		
			+	××			×		
	Me	thods	Ó	ć	\$ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	of sling		Å	X X		8	US.		
					U				
		tion angle: β ad factor	0	0-45° 1.4	> 45-60° 1.0	0-45° 2.1	> 45-60° 1.5		
	Diam. of chains	Quality grade							
100 % 133 % 160 %	Ø 4	VIP	0.63 0.80	0.88 1.12	0.63	1.32 1.70	0.95 1.18		
		Grade 80	1.12	1.6	1.12	2.36	1.7		
WLL	Ø 6	VIP	1.5	2.1	1.5	3.15	2.25		
		ICE	1.8	2.5	1.8	3.75	2.7		
Grade VIP UC	Ø 8	Grade 80 VIP	2.0	2.8 3.5	2.0	4.25 5.25	3.0 3.75		
80 100 20		ICE	3.0	4.25	3.0	6.3	4.5		
		Grade 80	3.15	4.25	3.15	6.7	4.75		
$\begin{pmatrix} \mathcal{H} \\ 1 \end{pmatrix} \begin{pmatrix} \mathcal{H} \\ 1 \end{pmatrix} \begin{pmatrix} \mathcal{H} \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	Ø 10	VIP	4.0 5.0	5.6 7.0	4.0 5.0	8.4 10.5	6.0 7.5		
8 85 10 12		Grade 80	5.3	7.5	5.3	11.2	8.0		
BRUD Hy 1 T Yespendigunary Control of the second	Ø 13	VIP	6.7	9.5	6.7	14.0	10.0		
		ICE	8.0	11.2	8.0	17.0	11.8		
	Ø 16	Grade 80 VIP	8.0 10.0	11.2 14.0	8.0 10.0	17.0 21.2	11.8 15.0		
	010	ICE	12.5	17.0	12.5	26.5	19.0		
	Ø 18	Grade 80	10.0	14.0	10.0	21.2	15.0		
	Ø 20	Grade 80	12.5	17.0	12.5	26.5	19.0		
ICE-VH ICE-MVK	0 20	VIP	16.0	22.4	16.0	33.6	24.0		
	Ø 22	Grade 80 VIP	15.0 20.0	21.2 28.0	15.0 20.0	31.5 42.0	22.4 30.0		
	Ø 26	Grade 80	21.2	30.0	21.2	45.0	31.5		
	Ø 28	VIP	31.5	45.0	31.5	67.0*	47.5*		
ICE-Star Hook ICE-AGH	Ø 32	Grade 80	31.5	45.0	31.5	67.0	47.5		
H-Connector ICE-CURT-K	- 3-	Attention: Acc. to BGR 500 single fall becon at a multiple str	/DGUV 100- nes valid wh	500 section	n 2.8, the WLL	for	Temperature °C / °F		
Subject to technical modifications! *Only 2 x 2-leg type available.									

nd Grade 120 (ICE) g chains netric loading

		ang						
endless**		Basket sli		Choke hitch**				
Basket sling chain with choke hitch		Basket sling chain** single double		single	double			
	*	R	R		0			
-	0-45°	> 45-60°	0-45°	> 45	-60°	0	0-45°	> 45-60°
1.6	1.1	0.8	1.7	1.		0.8	1.1	0.8
1.0	0.69	0.5	1.1	0.7	75	0.5	0.69	0.5
1.25	0.88	0.64	1.36	0.9	96	0.64	0.88	0.64
1.8	1.2	0.9	1.9	1.	3	0.9	1.2	0.9
2.4	1.65	1.2	2.55	1.		1.2	1.65	1.2
2.4	2.0	1.44	3.1	2.		1.44	2.0	1.44
			1	2.	<u> </u>	 		1000
3.2	2.2	1.6	3.4	2.	4	1.6	2.2	1.6
4.0	2.75	2.0	4.25	3.	0	2.0	2.75	2.0
4.8	3.3	2.4	5.1	3.	6	2.4	3.3	2.4
5.0	3.5	2.5	5.3	3.	8	2.5	3.5	2.5
6.4	4.4	3.2	6.8	4.		3.2	4.4	3.2
8.0	5.5	4.0	8.5	6.	0	4.0	5.5	4.0
8.5	5.8	4.0	9.0	6.	0	4.0	5.8	4.0
10.6	7.5	5.3	11.2	8.		5.3	7.5	5.3
12.5	8.8	6.4	13.6	9.		6.4	8.8	6.4
	0.0		1		•	I	0.0	0.4
12.5	8.8	6.4	13.6	9.	-	6.4	8.8	6.4
16.0	11.0	8.0	17.0	12		8.0	11.0	8.0
20.0	14.0	10.0	21.2	15	.0	10.0	14.0	10.0
16.0	11.0	8.0	17.0	12	.0	8.0	11.0	8.0
20.0	14.0	10.0	21.2	15	.0	10.0	14.0	10.0
25.6	17.6	12.8	27.2	19	.2	12.8	17.6	12.8
23.6	16.5	12.0	25.5	18	.0	12.0	16.5	12.0
32.0	22.0	16.0	34.0	24		16.0	22.0	16.0
			26.5			I		
33.5	23.3	17.0	36.0	25	.4	17.0	23.0	17.0
50.0	35.5	25.0	53.0*	37.	.5*	25.0	35.5	25.0
50.0	35.5	25.0	53.0	37	.5	25.0	35.5	25.0
Grade 80		-40° up to +200° C (+40° up to +392° F) 100 %	higher 200° up (higher 392° up 90 %	to 300° C to 572° F)	higher 3 (higher 5	00° up to 400° C 72° up to 752° F) 75 %	**70 % **	duction
		-40° up to +200° C (+40° up to +392° F)	higher 200° up (higher 392° up	to 300° C to 572° F)	higher 3 (bigher 5	00° up to 380° C 72° up to 716° F)	**20 % reduction for basket chains,	
VIP 100		100 %	90 %	90 %		60 %	^{60 %} due to sharp ec	
ICE 120		-60° up to +200° C (-76° up to +392° F) 100 %	higher 200° up to 250° C (higher 392° up to 482° F) 90 %		250° up to 300° C 182° up to 572° F) 60 %			
			90 %					

B RUD® MADE N GERMANY

RUD Ketten Rieger & Dietz GmbH u. Co. KG Friedensinsel 73432 Aalen/Germany Tel.: +49 7361 504-1316-1370-1224 Fax: +49 7361 504-1460 sling@rud.com · www.rud.com

Info

Rieger & Dietz GmbH u. Co. KG Friedensinsel 73432 Aalen/Germany Telefon +49 7361 504-1371 Telefax +49 7361 504-1460 sling@rud.com www.rud.com

FRANKEURT a.M.

Gü-M/7102033/D/10.15/Wa. Subject to technica

RUD Ketten

German engineering from the heart of Europe!

